Concepts of materials science sutton frs - The ebook is now available, just one click to start readi

Page 1


https://ebookmass.com/product/concepts-of-materials-sciencesutton-frs/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Electronic materials : principles and applied science Poplavko

https://ebookmass.com/product/electronic-materials-principles-andapplied-science-poplavko/ ebookmass.com

Foundations of Materials Science and Engineering, 7th Edition William Fortune Smith

https://ebookmass.com/product/foundations-of-materials-science-andengineering-7th-edition-william-fortune-smith/

ebookmass.com

Mössbauer Spectroscopy: Applications in Chemistry and Materials Science Yann Garcia

https://ebookmass.com/product/mossbauer-spectroscopy-applications-inchemistry-and-materials-science-yann-garcia/ ebookmass.com

The State of Texas: Government, Politics, and Policy 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/the-state-of-texas-government-politicsand-policy-3rd-edition-ebook-pdf/ ebookmass.com

Microelettronica 5th Edition Richard C. Jaeger

https://ebookmass.com/product/microelettronica-5th-edition-richard-cjaeger/

ebookmass.com

Advertising & IMC : principles and practice Tenth Global Edition Sandra Ernst Moriarty

https://ebookmass.com/product/advertising-imc-principles-and-practicetenth-global-edition-sandra-ernst-moriarty/

ebookmass.com

(eTextbook PDF) for Comparative Politics 2nd Edition by David J. Samuels

https://ebookmass.com/product/etextbook-pdf-for-comparativepolitics-2nd-edition-by-david-j-samuels/

ebookmass.com

Johann Friedrich Herbart: Grandfather of Analytic Philosophy Frederick C. Beiser

https://ebookmass.com/product/johann-friedrich-herbart-grandfather-ofanalytic-philosophy-frederick-c-beiser/

ebookmass.com

The Destruction You Deserve - A High School Dark Romance: Love, Lust, and Liars Book #2 Danielle Renee

https://ebookmass.com/product/the-destruction-you-deserve-a-highschool-dark-romance-love-lust-and-liars-book-2-danielle-renee/

ebookmass.com

Insurance Handbook for the Medical Office E Book 14th Edition, (Ebook PDF)

https://ebookmass.com/product/insurance-handbook-for-the-medicaloffice-e-book-14th-edition-ebook-pdf/

ebookmass.com

Conceptsofmaterialsscience

Fromreviewsafterpublication

Istronglyrecommendthisbookasessentialreadingforanyoneconsideringapplying tostudymaterialsatuniversity.

PeterHaynes,HeadofDepartmentofMaterials,ImperialCollegeLondon

Sutton,materialsscience’sleadingpedagogue,hasdistilledtheessenceofmaterials sciencetoitsmostbasic,beautifulideasandpresentsitinamanneraccessibleto everyscienceorengineeringstudent.ThisisaMUSTREADforeveryyoungscientist, aswellastheirteachers!

DavidJSrolovitz,DeanofEngineering,TheUniversityofHongKong

Thisbookisaremarkableattempttoprovidethebackgroundneededtoengagewith materialsscienceinthe21stcentury.

MikeAshby,UniversityofCambridge

Thebookwill...beusefulatmanylevelsofeducation.Itmaysteerhighschool studentswhohavetakenadvancedphysicsandchemistryclassestowardacollege majortheyprobablyhaveneverheardof.Likewise,itmayexcitephysicsandchemistry majorsincollegeaboutcontributingtothishighlyinterdisciplinaryfieldingraduate school.Itwillbeusefulsupplementaryreadinginacollegesciencecoursefornonscientists.Fortheprofessionals,itwillbeatreattosavorthebroadsweepofSutton’s visionoftheirfield.

FransSpaepen,HarvardUniversity

Thisbooktriessuccessfullytoguidestudentstobigideasandkeyconcepts,without steppingintodetails.Thismadethisbookimmenselyreadableandattractive.

TakeshiEgami,UniversityofTennesseeandOakRidgeNationalLaboratory

Thisbookprovidesabackboneonwhichreaderscanbuildfurtheranddeeperstudies onspecifictopicswithoutlosingsightoftheunderlyingphysicalconceptsthatlink togetherthevastnumberoftopicsthatmaterialsscienceincludestoday.

FrankErnst,CaseWesternReserveUniversity

Muchmorethananintroductiontomaterialsscience,...itiswrittenwithgreat insight,explainedinstraightforwardlanguageandwithminimaluseofequations. Thisbook...wouldbeusefulsupplementaryreadingforundergraduateslookingfor thebiggerpictureonselectedtopics.Iwouldrecommendthisbooktopre-university students...andtopostgraduatesinneighbouringdisciplines.

SteveSheard,UniversityofOxford

AdrianSutton’s...exceptionalclarityofthetextenables...studentstogainaunique insightintothesubjectinjust132pages.Thisbookispriceless!

XanthippiMarkensco↵,UniversityofCaliforniaSanDiego

Havingtaughtmaterialsscienceforsomanyyears,Iamgratifiedtoseetheclarityof Sutton’streatment,butIamalsoabitjealousofhisexpositoryabilities.

DavidPPope,UniversityofPennsylvania

AdrianSutton’sdirectandinformalwritingstyleandhisemphasisonphysicalunderstanding...makethismarvellousbook...apleasuretoread.

Mojm´ır ˇ Sob,MasarykUniversity,CzechRepublic

Conceptsofmaterialsscience

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

c AdrianP.Sutton2021

Themoralrightsoftheauthorhavebeenasserted

FirstEditionpublishedin2021

Impression:2

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData

Dataavailable

LibraryofCongressControlNumber:2021934825

ISBN978–0–19–284683–9(hbk.) ISBN978–0–19–284644–0(pbk.)

DOI:10.1093/oso/9780192846839.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY.

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

InmemoryofmyparentsPeterandBerylSutton

Abouttheauthor

EducatedinmaterialsscienceattheUniversitiesofOxfordandPennsylvania,Adrian SuttonhasheldprofessorshipsatOxfordUniversity,AaltoUniversityandImperial CollegeLondon.Amaterialsphysicist,addressingfundamentalaspectsofthescience ofmaterials,hehastaughtacrosstheundergraduatecurriculum.Hehasconsultedfor companiesintheUnitedStates,JapanandtheUK.HewaselectedtoaFellowshipof theRoyalSocietyin2003.HeisafounderoftheThomasYoungCentre,theLondon CentreforTheoryandSimulationofMaterials.Hewasalsothefoundingdirectorin 2009oftheCentreforDoctoralTraining(CDT)onTheoryandSimulationofMaterialsatImperialCollege,whichattractedintomaterialssciencemorethanahundred graduatesfromtheUKandoverseaswithfirstclasshonoursdegreesorequivalent inphysicsandengineering.Hisbook RethinkingthePhD istheextraordinarystory ofthisacclaimedCDT.In2012hewasawardedtheRector’sMedalforOutstanding InnovationinTeachingatImperialCollege.In2018heleftpaidemploymenttofocus onscholarship,andImperialCollegeconferredthetitleofprofessoremeritusonhim. HelivesinOxfordwithhiswifePatWhite.

Preface

Alltechnologiesdependontheavailabilityofsuitablematerials.Withoutinnovations inmaterialswewouldstillbelivingincaves.Theepochsofcivilisationhavebeen definedbythematerialspeoplehaveused,fromthestoneagetothebronzeageto theironageandnowthesiliconage.MarkMiodownikhaswritteneloquentlyabout howcountlessmaterialsshapeourlives1.RobertCahnwroteanauthoritativehistory oftheemergenceofmaterialsscience2 .

Thisbookisdifferent.Itisanattempttoidentifykeyconcepts–bigideas–ofthescienceofmaterials.Itisnotaboutanyparticularexperimental,theoretical orcomputationaltechniqueoranyparticularmaterials.ItdescribestenconceptsI believearecentraltomaterialsscience.

OnedifficultyIfacedinwritingthisbookwastheoverlapbetweenmaterialsscience andcondensedmatterphysics,solidstatechemistry,mechanicsofsolidsandbiology. MaterialssciencehasbecomesobroadthatforalongtimeIwonderedwhetherthere areanyconceptsthattiethesubjecttogether.

Ithinkofmaterialsasasubsetofcondensedmatter,distinguishedbyhavingause inanexistingorintendedtechnology.Thelinktotechnologyisthe raisond’ˆetre ofthe subject.Itexplainswhythestudyofmaterialsinvolvesscientistsandengineers,and whyitisoftendescribedasan‘enablingdiscipline’becauseitfacilitatesadvancesin technology.Ihavetriedinthisbooktohighlightthefundamentalnatureofmaterials scienceandtheinexhaustiblerichnessofitsintellectualcontent.

Theengineeringofmaterialsmaybedescribed3 asthe exploitation oftherelationshipsbetweenthestructure,propertiesandmethodoffabricationofamaterial,to designamaterialwithoptimumperformanceforparticularapplications.Thescience ofmaterialsmaybedescribedas understanding thoserelationships.Understanding andexploitingthoserelationshipstodesignandcreatematerialsforapplicationsin technologyistheessenceof‘Materials’asadiscipline.

ToidentifycoreconceptsofmaterialsscienceIhadtopeelawaylayersofdetail inthesearchforideasthatpervadethesubject.Inevitablysomeoftheconceptsare commontomainstreamphysicalsciences,suchasthermodynamicstability(Chapters 1 and 2),symmetry(Chapter 5)andquantumbehaviour(Chapter 6).Inthosecases Ihavefocusedontheirparticularsignificanceinmaterialsscience.

Thermodynamicsdefinesthestablestateofamaterialinitsenvironment.Itis rareforamaterialtobeinthisstablestate,butitisthestatetowardswhichthe

1Miodownik,M, StuffMatters,PenguinGroup(2013).

2Cahn,RW, TheComingofMaterialsScience,Elsevier(2001)

3NationalResearchCouncil1989. MaterialsScienceandEngineeringforthe1990s:Maintaining CompetitivenessintheAgeofMaterials,Chapter1:Whatismaterialsscienceandengineering? p.19-34.NationalAcademiesPress:WashingtonDC. https://doi.org/10.17226/758

materialwillevolveifitisleftaloneinitsenvironment.Thisimmediatelyintroduces theideaofchangeinamaterial,eithertowardsathermodynamicallystablestateor someotherstatedeterminedbyitsexposuretoforcesofvariouskinds.Incrystalline materialsdefectsofvariouskindsaretheagentsofchange(Chapter 4).Therateof changeisdeterminedbyrestlessatomicmotioninmaterials,bothinfacilitatingthe motionofdefectsandinretardingthem(Chapter 3).Defectsandtheirinteractions incrystallinematerialsareaperfectillustrationoftheconceptofemergenceofnew physicsinmaterialsatlargerlengthscalesthroughcollectivebehaviouratsmaller lengthscales(Chapter 8).Theemergenceofnewphysicsacrosstherangeoflength scalesfromelectronstoengineeringcomponentsisadefininganduniquefeatureof materialsscience.Theabilitytomanipulatethestructureofmaterialsacrossthisrange oflengthscalestoachievedesiredpropertiesleadstotheconceptofmaterialsdesign forparticularapplications(Chapter 9).

Sizemattersinmaterialsbecausetheirpropertiesaremoreobviouslydominatedby quantumphysicsatthenanoscale(Chapter 7).Thishasledtotheriseofnanoscience andnanotechnologywhichhaveunderpinnedthemodernageofinformationstorageandprocessing.Untilmetamaterialswereintroducedaroundtheturnofthe21st centurytherewerenomaterialsthatdisplayedcertainproperties,suchasnegative refraction.Metamaterialsremovedthislimitationbecausetheirpropertiesarenotdeterminedbytheirchemistrybutbytheircarefullydesignedstructure(Chapter 10). Treatingbiologicalmatterasamaterialhasledtotheconceptofactivematterinwhich complexityandself-organisationarisefromthecollectiveactionofenergy-consuming agents(Chapter 11).

Ihavestrivedtomakethisbookintelligibleforanyonewithapre-universityeducationinphysics,chemistryandmathematics.OnthewholeIhavelimitedtheuseof mathematicstoelementaryalgebraandquotingtheoccasionalusefulformula.Only inChapter 10 haveIrelaxedalittlethisself-imposeddiscipline.Suchashortbookas thiscannotbeself-contained.Therearereferencestobooksinthefurtherreadingat theendofeachchapter.Referencestoresearchpaperswithhyperlinksintheelectronic versionareincludedinfootnotesforthereaderwhowantstodelvedeeper.

Undergraduatesandmastersstudentsofmaterialssciencemayfindthisbooka refreshingandenlighteningsupplementtotheirusualreading.Graduatesinother subjectsmaygainanimpressionofwhatmaterialsscienceisabout,andIhopeitwill drawthemintopostgraduatestudyofthesubject.Ihopemycolleaguesinmaterials sciencewillfinditstimulatingandoccasionallyprovocative.

Thisis not atext-book.Muchofwhatisintext-booksonmaterialsscienceisnot treatedinthisbookand viceversa.Nevertheless,thisbookdoescoveralotofground.

IamgratefultoBobBalluffi,CraigCarter,MartinCastell,PeterDobson,Mike Finnis,PeterHaynes,PeterHirsch,StanLynch,TonyPaxton,JohnPendry,BobPond, LucaReali,ChrisRace,TchavdarTodorov,VasekVitekandanonymousreviewersfor helpfulcomments.Anyremainingerrorsaremyresponsibility.

Finally,IthankPatforhersupport,encouragementandeditorialskill.

ImperialCollegeLondon December2020.

6.4Identicalparticles,thePauliexclusionprincipleandspin

Whenisamaterialstable?

Atheoryisthemoreimpressivethegreaterthesimplicityofits premises,themoredifferentthekindsofthingsitrelates,andthe moreextendeditsareaofapplicability.Hencethedeepimpressionthat classicalthermodynamicsmadeuponme.Itistheonlyphysicaltheory ofuniversalcontentconcerningwhichIamconvincedthat,within theframeworkofapplicabilityofitsbasicconcepts,itwillneverbe overthrown.

AlbertEinstein,AutobiographicalNotesp.31,translatedandeditedby PaulArthurSchilpp,OpenCourtPublishingCompany(1996).ISBN 0812691792. c TheHebrewUniversityofJerusalem.Withpermission oftheAlbertEinsteinArchivesandofCricketMedia.

1.1Concept

Whentheyarenotbeingdeformed,irradiated,orconstantlydisturbedbyothermeans, materialsevolvetowardsastateofequilibriumwiththeirenvironments.Thermodynamicsdefinestheconditionsforsuchequilibriumundervariousenvironmentalconditions.Phasediagrams1 aremapsoftheequilibriumstatesofamaterialasthetemperatureandconcentrationsofitsconstituentsarevaried,usuallyatatmosphericpressure.

1.2Introduction

Mostmaterialsareunstableormetastable.Amaterialisinametastablestateif itsenergyisatalocalminimum,butnotthelowestenergystate.Acorrielakeisa metastablelocationofwater.Waterinthelakeattainsitslowestenergywhenitreaches thesea.Ifitistoreachtheseawithoutevaporatingthewaterlevelinthelakehastorise abovethelipretainingit.Whenmaterialsareundisturbedtheyevolvetowardsastable stateinwhateverenvironmenttheyarein.Theevolutionmayinvolveobviouschanges takingplacesuchascorrosion,wherethesurfaceofthematerialreactschemicallywith gasesorliquidsintheenvironment.Lessobviousarethechangesthatmaybetaking placeinsidethematerial.Theymayalsobechemicalinnature,involvingthemovement ofatomstowherethechangesaretakingplace.Theremaybeotherchangestothe internalstructureofthematerial,involvingareductionintheconcentrationofdefects, whichIwilldiscussinChapter 4.Dependingonthetemperatureofthematerialand

1Phasediagramsarediscussedinthenextchapter.

Whenisamaterialstable?

theenergybarriersthathavetobeovercome,someoftheseprocessesmaybeoccurring imperceptiblyslowly,insomecasesonageologicaltime-scale(hundredsofmillions ofyears).Othersmaybeoccurringinpicoseconds(10 12 s).Thepossiblerangeof time-scalesfortheseprocessesspans27ordersofmagnitude2

Thereareotheroccasionswhenmaterialsaredrivenawayfromastablestate. Forexamplethezirconiumcladdingofthenuclearfuelrodsinapressurisedwater nuclearreactorisbeingconstantlybombardedbyneutrons.Lowdensitypolythene undergoeschemicalchangeswhenitisexposedtosunlight,becomingbrittleandreleasingmethaneandethane.Railsdeformandoccasionallydevelopcracksthroughthe repeatedloadingduetotrainspassingoverthem.

Thermodynamicsdefinestheconditionsfordifferentregionswithinamaterialto beinequilibriumwitheachotherandwithanyenvironmentthematerialisin.Ifthe materialisabletoexchangeenergyand/ormatterwithitsenvironment,equilibrium involvesthoseexchangesaswell.Whenamaterialisinequilibriumitisstableinthe sensethatitdoesnotundergoanyfurtherchanges.Inthischapterwewillfindout whatthoseconditionsare.

Anyonewhostudiesaphysicalscienceorengineeringwilleventuallymeetthermodynamicsbecauseitsconceptsandprinciplesaresouniversal,asEinsteinremarked inthequoteatthebeginningofthischapter.Wearegoingtogoonquiteajourneyin thischapterandIamnotgoingtoassumeyouknowanythingaboutthermodynamics. Butfirstweneedtodefinecertaintermswewillbeusing.

1.3Definitions

Inthermodynamicstheobjectweareconsideringanditsenvironmentiscalledthe system.Thereare isolatedsystems inwhichanobjectissurroundedbyboundaries thatareimpenetrabletoenergyandmatter.Theobjectisthenseparatedfromits environmentandthesystemcomprisestheobjectonly.Iftheobjectcanexchange energybutnotmatterwithitsenvironmentthesystemiscalled closed.Therearealso opensystems inwhichanobjectcanexchangeenergyandmatterwithitsenvironment. Althoughtheoverallchemicalcompositionofanobjectineitheranisolatedorclosed systemdoesnotchange,therecanbearedistributionofelementswithintheobjectas itevolvestowardsequilibrium.Thestateofequilibriumofanobjectdependsnotonly ontheobjectitselfbutalsoonwhetherandhowitinteractswithitsenvironment.

Thechemicalspeciesthatmakeupthesystemarecalled components.Theymaybe atoms,suchasironandcarbon,ormolecules,suchaswaterandmethane.The chemical composition ofamulti-componentsystemisthespecificationoftheconcentrationof eachcomponentpresent.Inamulti-componentsystemitisquitecommontofind regionsinwhichtheatomicstructureandchemicalcompositionareconstant.Sucha regioniscalleda phase.Iftheregionoccupiedbythephaseisonlynanometresinsize thenasignificantfractionoftheatomswillbeclosetothesurfaceorinterfacebounding it.Thestructureandcompositionofsuchasmallregionmaythendiffersignificantly fromamacroscopicregion.Itisdoubtfulthatsuchasmallregioncanbeclassifiedas

2Anorderofmagnitudeisafactoroften.Twentysevenordersofmagnitudemeansafactorof 1027 .

aphase.Thisisonereasonwhythermodynamicsappliesonlytomacroscopicsystems, containinglargenumbersofparticles.

WeareusedtousingtemperaturescalesliketheCelsiusscale3,thezeroofwhich correspondstothefreezingpointofpurewater,andforwhichnegativetemperatures arepossible.Inthermodynamicsweusean absolute temperaturescale,measuredin kelvin,thezeroofwhichrepresentsanabsoluteminimumtemperature.Onewaythis scalecanbedefinediswiththenotionofan idealgas:acollectionofperfectpoint particleswhichdonotinteractwithoneanotherexceptwhentheycollide.Atafixed pressure,aquantityofanidealgashasavolumethatisproportionaltothetemperaturemeasuredontheabsolutescale,becomingzeroatzerotemperature.Thisabsolute zeroontheKelvinscaleisequalto-273.15degreescelsius.Therefore,thetemperature inkelvinequalsthetemperatureindegreescelsiusplus273.15.

Heat isthe kineticenergy oftherandommovementofatomsthatmakeupan object.Whenhotandcoldbodiesarebroughtintocontactkineticenergyofatomsin thehotbodyistransferredtoatomsinthecoldbodythroughatomiccollisions.We saythattheyhavereachedthesametemperaturewhenthereisnofurthernettransfer ofatomickineticenergybetweenthem.Atamicroscopicleveltherearelocaltransfers ofkineticenergybetweenbothbodiesthroughatomiccollisions,buttheysumtozero onaveragewhenthebodieshavethesametemperature.

Atomsthatmakeuptheobjectofstudyalsohave potentialenergy.Itarisesfrom theattractiveandrepulsiveforcestheyexertoneachother,andfromtheirinteractionwithelectric,magneticandgravitationalfieldsimposedontheobjectbyits environment.Inasolidthepotentialandkineticenergiesofeachatomarechanging continuouslyandextremelyrapidlybecauseeachatomisvibratingaboutitsaverage position.Theperiodofvibrationisaround10 13 seconds.Inacubiccentimetreofa solidtherearearound1022 atoms.Todefinethestateofacubiccentimetreofasolid intermsoftheinstantaneouskineticandpotentialenergiesofeachatomisimpossible. Itisalsounnecessary.Inthermodynamicsthestateofasystemcomprisingasingle componentcanbedefinedintermsofonlytwovariables,called statevariables.For example,thethermodynamicstateofafixedamountofasinglecomponentsubstance isdeterminedbyitsequationofstate,whichrelatesthethreestatevariablespressure, volumeandtemperature.Whenanytwoofthesethreestatevariablesarespecifiedthe thirdisdeterminedbytheequationofstate.Furthermore,unlikethekineticandpotentialenergiesofindividualatomsthesestatevariablesareexperimentallymeasurable. Statevariablesandpropertiesareeitherextensiveorintensive. Extensivevariables are proportionaltothesizeofthesystem,suchasvolume,theamountofacomponent andinternalenergy. Intensivevariables areindependentofthesizeofthesystem,such astemperature,pressureandchemicalpotentials(chemicalpotentialsarediscussedin section 1.9).

Whenamaterialisinequilibriumtheintensivevariablestemperature,pressure andchemicalpotentialsareconstantthroughoutthesystem.Thisisthedefinitionof the equilibriumstateofamaterial intheabsenceofanyfieldsactingonthematerial, suchasgravity.Whensuchfieldsexisttheyhavetobetakenintoaccountinthe determinationoftheequilibriumstate.Forexample,thepressurewithinacolumn

3In1948thecentigradetemperaturescalewasrenamedthecelsiusscale.Theyareidenticalscales.

Whenisamaterialstable?

supportingatallbuildinghastoincreaseaswegodownthecolumntomaintain mechanicalequilibrium.

Aswehavealreadynoteditiscommonforamaterialnottobeinequilibrium. Provideditisnotbeingdrivenawayfromequilibriumthisstateremainsimportant becauseitisthestatetowardswhichthesystemevolves.Inthatcaseitprovidesthe direction ofchangewithinthematerial.Butitdoesnotprovidethe rate ofchange becausetimedoesnotappearinequilibriumthermodynamics.Althoughmanyofthe mostusefulmaterialsarenotatequilibriumtheyareinmetastablestatesthatcan endureformuchlongerthantheservicelifeofthematerial.Thisfeatureofmaterials isexploitedextensivelyintheirdesign,asdiscussedinChapter 9

1.4Thefirstlawofthermodynamics

Thefirstlawofthermodynamicsistheconservationofenergy:

Energycannotbecreatedordestroyed.Itcanonlybeconvertedfromoneformto another.

AsweshallseeinChapter 5 theultimateoriginofthislawisasymmetryofa particularkind.Formsofenergyincludekineticenergy,heatandvariousformsofpotentialenergysuchaschemicalenergy,electricalenergy,magneticenergy,gravitational energy,andsoon.

Energy isthecapacitytodowork4.Inthermodynamics work doesnothavethe usualmeaningoflabour.Ithasthesamemeaningasinmechanics.Workisdonewhen thepointofapplicationofaforcemovesinthedirectionoftheforce.Theworkdoneis equaltotheforcemultipliedbythedisplacementofthepointofitsapplicationinthe directionoftheforce.Whenworkisdoneenergyistransferred.Iftheforceisexerted onanobjectbyitssurroundings,andthepointofitsapplicationisdisplacedinthe directionoftheforce,energyistransferredfromthesurroundingstotheobject,and viceversa.Whenyoustretchaspringbypullingonitsendsyouaredoingworkonthe spring.Theworkyouhavedoneisconvertedintopotentialenergyinthespring.Ifyou releaseoneendofthespringitretractsquicklyanditspotentialenergyisconverted intokineticenergy.Weshallseethatinthermodynamicsthereareotherformsofwork, notonlythoseofamechanicalorigin.

The internalenergy ofanobjectcanincreaseintwowaysinaclosedsystem. Itcanreceiveheatanditcanhaveworkdoneonit.Ifitlosesheatorifitdoes workitsinternalenergydecreases.Inanopensystem,wheretheobjectcanexchange matterandenergywithitsenvironment,itsinternalenergycanalsochangethrough theadditionorremovalofatoms.Ifanatomofaparticularelementisaddedtothe system,withnosimultaneoustransferofheatorwork,theinternalenergyincreases byanamountcalledthe chemicalpotential oftheelement.Chemicalpotentialsare intensivevariablesliketemperatureandpressureandweshallseethattheyplaya centralroleintheequilibriumofisolated,closedandopenmulti-componentsystems.

4Inthenextsectionwewillseethereisalimitationontheconversionofheatintowork.Amore precisestatementisthat free energyisthecapacitytodoworkunderspecifiedconditions.Freeenergy isintroducedinsection 1.7.

Theequilibriumstateofasystemisnotdeterminedbyminimisationoftheinternal energyalone,exceptatextremelylowtemperatures.Forexample,whenasolidmelts itsinternalenergyincreasesbecauseitabsorbslatentheat,butmeltingisachangeof phasetoanewequilibriumstate.Theotheressentialingredientisthe entropy ofthe system.Inclassicalthermodynamicsentropyisdefinedsomewhatabstractlybythe propertiesofheatengines,whichwewillnotgointohere.Inthenextsectionwewill introduceentropyinmorephysicalterms.

1.5Thesecondlawofthermodynamics

1.5.1Irreversibilityandentropyproduction

Amanisfilmedashefallstenmetresintoatall,thermallyinsulatedtankcontaining 100cubicmetresofwater.Thereisasplashashisbodydisplaceswater.Nowater escapesbecausethetankwallsarehigh.Wavesarecreatedandreflectedoffthewalls. Hefinallycomestorestafloat,thewavesdieawayleavingaflatsurfaceofthewater, andallthewatersplashesrundownthesidesofthetankbackintothebodyofwater.

Weknowimmediatelyifthefilmisplayedbackwardsbecauseitshowsanimpossible sequenceofevents.Howcanaman,startingfromastationarypositioninperfectly stillwaterinatank,emergecompletelydryandflythroughtheairatasufficient speedtoreachhisoriginalpositiontenmetresabovethewater?Althoughthisis obviouslyimpossibleitdoesnotviolatethefirstlawofthermodynamics!Thepotential energythemanhadwhenhewastenmetresabovethewaterisconvertedintohis kineticenergyashefallstowardsthewaterandthenintokineticenergyofwater moleculesinthetank.Inotherwords,thewateriswarmer.Accordingtothefirst lawofthermodynamicsthereisnoreasonwhytheheatthathasbeenimpartedto thewatercannotbeconvertedbacktopotentialenergybysendinghimbacktohis originalpositionabovethetank.

Byrunningthefilmbackwardsweareseeingaworldinwhichthedirectionoftime hasbeenreversed.Theequationsgoverningtheman’smotionandthemotionofthe watermoleculesareexactlythesameiftimeisreversed.Theydisplay‘time-reversal symmetry’.Areturntohisoriginalpositionabovethetankdoesnotviolatethese equationsofmotionbecausetheyareindependentofthedirectionoftime.Butallour instinctstellusthisisimpossible.

Whatarewemissing?In100cubicmetresofwatertherearearound1030 molecules. Eachofthesemoleculescanbeanywhereinthe100cubicmetrevolumeofwater.They havearangeofvelocities,determinedbythetemperatureofthewater.Eachmolecule followedaparticulartrajectorywhenthemanjumpedintothetank.Itstrajectoryis definedbyitspositionandvelocitythroughoutatimeinterval,sayfromjustbefore hereachedthesurfaceofthewatertosometimeafterthewaterinthetankhas settleddownaroundhim.Toreversehisfalleachwatermoleculewouldhavetofollow thesametrajectorybutinreverse.Thatispossiblebutitisjustoneofverymany trajectorieseachmoleculecanfollow.Thetotalnumberofpossibletrajectoriesofall 1030 moleculesisahugenumber,butitisnotinfinite.Iftimewerereversed,itwould notviolatetheconservationofenergyifallwatermoleculesreversedtheirtrajectories resultingintheman’sejectionfromthewater.Butforthattohappenthewater moleculeswouldhavetofollowoneparticularsetof1030 moleculartrajectoriesfrom

Whenisamaterialstable?

atotalnumberofpossibletrajectoriesmuchlargerthan1030.Theprobabilityofthat happeningissosmallaseffectivelytobeimpossible5 .

Whatwearehominginonhereisthe irreversibility ofspontaneousornatural processes.Oncewehavestirredfreshmilkintoacupofteawefinditimpossibleto separatethem.Ifwerunhotandcoldwaterintoabathwecannotseparatethehot waterfromthecold.Whenwedeformapieceofmetal,suchasapaperclip,sothat ittakesonanewpermanentshapethemetalbecomesharderandwarmeranditwill notspontaneouslyreturntoitssofter,undeformedstate.Ifwebreakachinacupinto piecesitcannotbereturnedtoitsformerpristinestatebycarefullyputtingallthe piecesbacktogetheragain.Ifwedischargeacapacitorthrougharesistorthecharge decreasesandeventuallyreacheszero.Heatflowsfromregionsofhightemperatures toregionsoflowtemperaturesbutnotbackagain.Itistheirreversibilityofthese processesthatdefinesoursenseofthedirectionoftime.Althoughthefundamental equationsofmotionofatomsandmoleculesaresymmetricwithrespecttothereversal oftime,theUniverseisnot.

Inthermodynamicsthedegreeofirreversibilityofaprocessischaracterisedand quantifiedbysomethingcalled entropy.Inallirreversibleprocessestheentropyofthe systemanditssurroundingsincreases.Foraprocesstobereversiblethetotalchange ofentropyhastobezero.Ifthereisanegativechangeinentropysomewhereitis alwayscompensatedbyapositivechangeofentropyatleastaslargesomewhereelse. Thesecondlawofthermodynamicsmaybestatedinequivalentwaysasfollows:

• Noprocessispossibleinwhichtheonlyresultisthecompleteconversionofheat intowork.

• Noprocessispossibleinwhichtheonlyresultisthetransferofheatfromacolder toahotterbody.

Ina spontaneousprocess thesystemchangesinanaturalwayfromanon-equilibrium statetowardsanequilibriumstate.Itisonlywhenthesystemisinequilibriumthat theentropyisconstant.Ifthesystemisisolateditsentropyisthenamaximum.Ifthis werenottrueaspontaneouschangeintheisolatedsystemwouldincreaseitsentropy, andthereforethesystemcouldnothavebeenatequilibrium.Thermodynamicstells usonlyaboutthedirectionofchange,andtheultimatedestination.Thetimeittakes forthesechangestooccurisnotpredictedbyequilibriumthermodynamics.

5 Iftherewerean infinite numberofpossibletrajectoriesforthe1030 moleculesthentheprobabilityofthemanemergingfromthewaterinadrystateandreturningtohisoriginalpositionwould be1/∞ =0.Thereasonitisnotzero,albeitextremelysmall,isthatthereisalowerlimitonthedifferencebetweentwotrajectoriesforthemtobeclassifiedasdistinct.ThelimitissetbyHeisenberg’s uncertaintyrelationofquantumtheory.Itstatesthattheuncertaintyinameasurementofaposition coordinateofaparticlemultipliedbytheuncertaintyinameasurementofthecorrespondingmomentumcoordinateisatleastequaltothePlanckconstant, h =6 626 × 10 34 Js.Thisdiscretisesthe 6 × 1030 dimensionalspace(eachmoleculehas3positioncoordinatesand3momentumcoordinates) ofthemoleculartrajectoriesinto1030 cells,eachofvolume h3.Ifthepositionsandmomentaofa givenparticlefallwithinthesame h3 celltheymustbetreatedasthesame.Although h issmallitis notzero.Itfollowsthatthenumberofpossibletrajectoriesofeachmoleculeisaverylargenumber butitisnotinfinite.(ThisisthereasonwhythePlanckconstantappearsinthestatisticalmechanics ofparticlesobeyingclassicalphysics,eventhoughitisnormallyasignatureofquantumphysics.)

A reversibleprocess takesthesystemthroughacontinuoussequenceofequilibrium states.Thisisanunattainablelimitingprocessthatcanbeapproachedinrealityonly bymaintainingthesystemextremelyclosetoequilibrium.Suchaprocesscanbe exactlyreversedifitisdrivenveryslightlyinthereversedirection.Theprocesshasto becarriedoutextremelyslowlytoallowthewholesystemtore-equilibrateaftereach extremelysmallchange.Thechangeofentropyassociatedwithareversibleprocessis zerobecausethesystempassesthroughasequenceofonlyequilibriumstates.

Thechangeofentropyofanobjectwhichundergoesachangeofequilibriumstate, suchasaphasechangeorachangeoftemperature,isindependentofwhetherthe changeoccursreversiblyorirreversibly.Thatisbecausetheentropyoftheobjectis uniquelydefinedbythevariablesthatdefineitsequilibriumstate,suchastemperature, pressureandchemicalpotentials.Inachangeofequilibriumstatethechangeofentropy dependsonlyontheinitialandfinalstates,andnotonhowitgetsfromtheinitialto thefinalequilibriumstates.Thispropertyofentropyelevatesittoa functionofstate. Anypropertyofthesystemwhichisuniquelydefinedbyitsequilibriumstateiscalled afunctionofstate.Theinternalenergyisanotherexampleofafunctionofstate.

Inareversiblechangeofstatethechangeofentropyofthesurroundingsisthe negativeofthechangeofstateoftheobject.Thechangeofthetotalentropyisthen zero.Inanirreversiblechangeofstateofasystemthesumofthechangesofentropy intheobjectanditssurroundingsisalwaysgreaterthanzero,byanamountthat increaseswiththedegreeofirreversibility.Butinallcasesthechangeofentropy oftheobjectundergoingachangeofstateisthesameirrespectiveofthedegreeof irreversibilityofthechange.

Ifasmallquantityofheat δq istransferredtoanobjectreversiblytheincreaseof theentropyoftheobjectis defined by δq/T ,where T isthetemperatureoftheobject. Inthisdefinition δq hastobesmallingeneralbecauseotherwisethetemperatureof theobjectwillchangeafter δq hasbeenadded.Butiftheheattransferredislatent heatassociatedwithaphasechangethen δq canbetheentirelatentheatsincethe temperature T isconstantduringthephasechange.Iftheobjectlosesheat δq is negativeandtheentropyoftheobjectdecreases.

Sincetheinternalenergyofanobjectisafunctionofstateitchangesbythesame amountinachangeofstate,irrespectiveofwhetherthechangeoccursreversiblyor irreversibly.Ingeneralachangeofstateinvolvesboththeadditionorremovalofheat andworkbeingdoneonorbytheobject6.Onlythesumofthesetwocontributionsto thechangeofinternalenergyisindependentofwhetherthechangeoccursreversibly orirreversibly.Thismeansthatingeneraltheheatgainorlossandtheworkdoneon orbytheobjectarenotfunctionsofstate.

Supposewehaveanisolatedsysteminwhichtherearelocalvariationsintemperature.Ifasmallamountofheat δq leavesalocalregionwithtemperature T1 the entropyoftheregionchangesby δq/T1.Ifthequantityofheat δq istransferredto

6AJouleexpansionisaninterestingexceptiontothisstatement:anidealgasoccupieshalfa containerandisseparatedfromavacuumintheotherhalfbyaremovablepartition.Theentire containeristhermallyinsulated.Thepartitionisremovedandthegasquicklyoccupiesthewhole container.Noheatentersorleavesthegasandnoworkisdoneonorbythegas.Itsinternalenergy anditstemperatureremainthesame.However,asweshallseeinthenextsectionitsentropyincreases becauseitoccupiestwicethevolume.

8 Whenisamaterialstable?

aregionwherethetemperatureis T2 itsentropychangesby+δq/T2.Thechangeof thetotalentropyofthesystemis δq/T2 δq/T1.Thesecondlawsaysthatforthis processtooccurspontaneouslythetotalchangeofentropymustbepositive.Thatis trueprovided T1 >T2.Inotherwords,heatflowsspontaneouslyonlyfromregionsof highertemperaturetoregionsoflowertemperature,whichaccordswithourexperience.Thestateofmaximumentropyiswhenthetemperatureisconstantthroughout thesystem.Werecognisethisasaconditionforthermalequilibriuminanisolated system.

Thesecondlawrecognisesthatthereissomethinguniqueaboutheat.Itisquite easytoconvertpotentialenergyintoelectricalenergy,andtoconvertelectricalenergy backintopotentialenergy,albeitwithsomelossesduetofriction.Thisiswhatis donefrequentlyatDinorwigpowerstation7 inSnowdonia,NorthWales.Conversions betweenotherformsofenergyarealsofeasible.Butnotwhenthefinalproductisheat. Forexample,whenanaircraftlandsmostofitskineticenergyendsupasheatinits brakes.Thatheatcannotbeusedtosendtheaircraftbackintotheair,despitethe firstlaw.Thesecondlawandourexperiencetellusthatwhenenergyisconvertedinto heatitisimpossibletoconvertallthatheatbackintowork.Thisisoftendescribedas the‘degradation’ofenergy.Asweshallseeinthenextsectionstatisticalmechanics explainsthispropertyofheatintermsofthe dispersal ofenergyamongmicrostatesof thesystem.Asenergybecomesmoredisperseditbecomeslesscapableofdoingwork, suchaspropellinganaircraftintotheair.

1.5.2Entropyintermsofmicrostates

Wehaveseeninsection 1.3 thatthethermodynamicstateofanisolatedsystemis expressedintermsofstatevariablessuchaspressure,volumeandtemperature.These aremacroscopicvariablesandtheydefinethe macrostate ofthesystem.AsIdiscussin Chapter 3,ifwewereabletolookinsideoneofthesemacrostatesattheatomicscalewe wouldseeatomsinconstantmotion.Ifthereare N atomsintheisolatedsystemthere are3N variablesassociatedwiththeirpositionsandanother3N variablesassociated withtheirinstantaneousvelocities8.These6N variablesconstitutea microstate ofthe system.Toeachmacrostateofthesystemthereisaverylargenumberofpossible microstates9.Butsomemacrostatesmayhavemanymoremicrostatesthanothers. Forexamplewhenacrystalmeltstheliquidstatehasmanymoremicrostatesthan thecrystalbecausetheatomsarenolongerconfinedtotheiraveragepositionswithin thecrystal.

Theconceptofentropywasintroducedatatimewhennoteveryonebelieved matterwasmadeofatoms.Itsderivationinclassicalthermodynamicsinvolves‘Carnot cycles’and‘heatengines’anditissomewhatabstract.ItwasLudwigBoltzmannwho providedamorephysicalunderstandingofentropy.Boltzmannshowedthatentropy increaseswiththenumber W of microstates ofanisolatedsystem,giventhatthe internalenergy,numbersofparticlesofeachspeciesandvolumeandshapeofthe

7https://www.electricmountain.co.uk/Dinorwig-Power-Station

8Thefactorsof3arisefromthe3spatialdimensionsofthesystem.

9Althoughthenumberofmicrostatesisverylargeitisnotinfiniteforthequantummechanical reasonexplainedinfootnote 5.

Thesecondlawofthermodynamics 9 systemareallconstant.Ifitisassumedthateachmicrostateisequallyprobable Boltzmannshowedthattheentropy S isproportionaltothelogarithmofthenumber W ofmicrostatesofthesystem:

= kB logeW

wheretheconstantofproportionality kB isthe Boltzmannconstant equalto1 381 × 10 23 Joulesperkelvin(JK 1).TheBoltzmannconstantisthegasconstant10 , R = 8.314JK 1,dividedbyAvogadro’snumber, NA =6.022 × 1023.Ifthereisanincreaseinentropyassociatedwithachangeofmacrostateofanisolatedsystem,the newmacrostatehasalargernumberofmicrostatesinwhichitcanexist.Thisiswhat ismeantbysayingthattheinternalenergyisdispersedoveralargernumberofmicrostateswhentheentropyincreases.Itdoesnotmeanthatatanygiveninstantintime theinternalenergyisdistributedamongmorecoexistingmicrostates.Itmeansthere aremoremicrostatesavailablefromwhichoneisselectedfortheentiremacrostateat anygiveninstantintime.

Itisnotdifficulttoseewhytheentropyhastodependonthe logarithm ofthe numberofmicrostates.ConsidertwoisolatedsystemsAandBatthesametemperature.LetthenumberofmicrostatesofsystemAbe WA andofsystemBbe WB .The entropiesoftheseparatesystemsare SA = kB logeWA and SB = kB logeWB .Suppose thetwosystemsarebroughtintothermalcontacttomakeasinglecombinedsystem, whilemaintainingabarrierbetweenthemtopreventtheircontentsfrommixing.Since thetwosystemsAandBareatthesametemperaturenoheatflowsbetweenthem. Withnoheatflowbetweenthem,andnointermixingoftheircontents,theentropyof thecombinedsystemisthesameasthetotalentropyoftheseparatesystemsAand B.Thetotalentropyoftheseparatesystemsis SA + SB = kB logeWA + kB logeWB Thenumberofmicrostatesofthecombinedsystemis WAWB ,andthereforeitsentropyis kB loge(WAWB ).Theseexpressionsareindeedequaltoeachotherbecause loge(WAWB )=logeWA +logeWB .Onlythelogarithmhasthisproperty.

Inanidealgasatconstanttemperaturethenumberofmicrostatesavailableisproportionaltothevolumeofthegasbecauseeachgasparticleisfreetoroamthroughout thevolume.Thereforetheentropyofanidealgasatconstanttemperatureisproportionaltothelogarithmofthevolumeitoccupies.Thisiswhytheentropyofthegasin aJouleexpansionincreases(seefootnote 6).Incontrast,atomsinasolidareconfined bytheirneighbourstomoveinmuchsmallervolumesthanthetotalvolumeofthe solid.Theyvibrateabouttheirequilibriumpositions,andthemicrostatesavailableto thematconstanttemperatureincreasewiththeiramplitudesofvibration.Therefore, atomsinlessconfined,moreopenspacesinagivensolidcontributemoretothetotal entropyofthesolidthanatomsinmoreconfinedenvironments.Theseideascarryover toexoticmaterialssuchascolloidswhereparticlesthataresmallbutmuchlargerthan atomsareheldinsuspensioninaliquid.Itisfoundthatinertspheressuspendedin

10thegasconstantis R intheequationofstateofanidealgas PV = nRT ,where P isthegas pressuremeasuredinpascals, V itsvolumeincubicmetres, T itstemperatureinkelvinand n isthe amountofthegasinmoles.

S

aliquidmaysometimescrystalliseinstructuresthatarenotdenselypacked.These openstructuresarestabilisednotbypotentialenergybutbytheirhigherentropy11

1.5.3Configurationalentropy

Theentropyofanisolatedsystemmayalsoincreaseastheresultofmixingdistinguishableatomstogether.Thisiscalled configurationalentropy.Asasimpleexample, considerahypotheticalsquaretwo-dimensionalcrystalwithasquarelattice,comprising10 × 10latticesites.Forsimplicityweshallignoretheatomicvelocitiesinthis example.Eachofthe100latticesitesmaybeoccupiedbyeitherablackatomora whiteatom.Thecolourdenoteseitheradistinctisotopeofthesameelement,suchas carbon-12andcarbon-14,oratomsoftwoelements.Lettherebe50blackatomsand 50whiteatomsarrangedonthe100sites.Thereisa‘maximallyseparated’stateas showninFig. 1.1a.Thereisalsoa‘maximallyintermixed’statewherethefourneighboursofeachblackatomarewhiteand viceversa,asshowninFig. 1.1b.Fig. 1.1c illustratesaconfigurationwherethe100atomicsitesareoccupiedrandomlyby50 blackand50whiteatoms.Itisanamazingfactthattherearearound1029 similar randomconfigurationsof50blackand50whiteatomsonthese100latticesites12.Each oftheconfigurationsshowninFig. 1.1 isamicrostateofthecrystalof100atoms. Iftheblackandwhiteatomsareisotopesofthesameatomthepotentialenergiesof alltheseconfigurationsareequal,becausetheenergiesofthebondsbetweenatomsare independentofthenumberofneutronsineachatomicnucleus.Atalltemperaturesup tothemeltingpointtheentropyismaximisedwhenthecrystalisdisorderedbecause all1029 configurationsareequallyaccessible,andtheoverwhelmingmajorityofthem aredisordered.Inarealcrystalwithmanymorethan100atomicsitesthenumberof possiblerandomatomicconfigurationsincreasesrapidly.Thisiswhyitwassodifficult toseparatetheisotopesofuraniumintheManhattanProjecttodeveloptheatomic bomb.

Supposebondsbetweenatomsofthesamecolourareoflowerpotentialenergythan thosebetweenatomsofdifferentcolours.Thepotentialenergyofthesystemisminimisedwhenthenumberofbondsbetweenblackandwhiteatomsisminimised.This correspondstotheconfigurationofFig. 1.1a.Thereareafurtherthreeconfigurations equivalenttoFig. 1.1aobtainedbyrotatingthewholecrystalaboutthenormaltothe pageby90◦ , 180◦ and270◦.AnydeviationfromtheconfigurationshowninFig. 1.1a requiresenergy,butifthereisnoheatintheisolatedsystemnosuchdeviationsare permittedbythefirstlaw.Theconfigurationalentropyisthen kB loge4becausethere arefourequivalentconfigurations.

ImagineweheatthesystemdepictedinFig. 1.1arapidlytoalowtemperature andthenisolateit.Thenewequilibriumstateoftheisolatedsystemisdetermined bymaximisingtheentropyattheslightlyhigherinternalenergy.Anexchangeof neighbouringblackandwhiteatomsattheinterfaceraisesthepotentialenergyofthe systembecauseitincreasesthenumberofbondsbetweenatomsofdifferentcolours

11Mao,X,Chen,QandGranick,S,NatureMater 12,217(2013).

12Thetotalnumberofconfigurationsisthebinomialcoefficient 100C50 =100!/(50!)2.Thenumber ofrandomconfigurationsis6lessthan 100C50 becausethereare4configurationslikeFig. 1.1aand 2configurationslikeFig. 1.1b.

Fig.1.1 Fouratomicconfigurationsofa10 × 10squarecrystallattice,with50‘black’atoms and50‘white’atomsoccupyingthe100latticesites.(a)themostseparatedstate.(b)the mostintermixedstate.(c)oneofthe ≈ 1029 configurationswithsitesoccupiedbyblackand whiteatomsatrandom.(d)theatomicconfigurationshownin(a)withoneexchangebetween blackandwhiteatomsattheinterface.Theexchangeintroduces6newbonds,showninred, betweenblackandwhiteatoms.

bysix,asshowninFig. 1.1d.Providedthereissufficientheatinthecrystaltosupply thisincreaseofpotentialenergyalocalthermalfluctuationcanenabletheexchange tooccur,atleastinprinciple.Theadditionalpotentialenergyofthenewbondsis accompaniedbyareductioninthekineticenergyofthesystem,maintainingaconstant valueoftheinternalenergy.Thepairofexchangedatomsattheinterfacemayproceed toexchangewithotheratomswithnofurtherincreaseofpotentialenergy.Thus, onceanexchangehasoccurredattheinterfacetheexchangedwhiteatomcanoccupy anyofthe50blackatomsitesofFig. 1.1d.Similarly,theexchangedblackatomcan occupyanyofthe50whiteatomsites.Thusoneexchangeattheinterfaceleads to50 × 50=2, 500newconfigurationsthatsharethesamepotentialenergy.The configurationalentropyhasincreasedasaresultofthisoneexchangeattheinterface. Furtherexchangescantakeplaceifthereissufficientheatinthesystem.Atequilibriumtheatomicstructureofthesystemisnotconstantintimebutisrunningthrough alltheaccessiblestatesatthegiveninternalenergy.Astheatomicstructurechanges thetotalpotentialenergyofthebondschangestoo.Thetemperatureofthesystem hastochangetomaintainconstanttheinternalenergy.Theaveragetemperaturewill settledowntoavalueatequilibriumthatislessthanthetemperatureofthesystem beforeitequilibrated.Furtherinjectionofheatintothesystemwilleventuallyenable all1029 configurationstobecomeaccessible.AlthoughthestateshowninFig. 1.1a,or

Whenisamaterialstable?

oneofthethreeequivalentconfigurations,continuestohavethelowestpotentialenergyitisextremelyunlikelytoarisewhentherearesomanymoreaccessibledisordered configurationslikeFig. 1.1c.

The‘mostintermixed’configurationshowninFig. 1.1barisesatlowtemperatures whenbondsbetweenatomsofdifferentcolourshavealowerpotentialenergythanthose betweenatomsofthesamecolour13.Asthecrystalisheatedanincreasingnumber ofatomicexchangesmaytakeplaceuntileventuallyall1029 randomconfigurations becomeaccessible,assumingitdoesnotmeltfirst.Thustheequilibriumconfiguration ofthecrystalathightemperaturesisanaveragetakenoverall1029 configurations, almostallofwhicharerandom.Inthisstateiftheatomsreallywerecolouredblack andwhitetheywouldallappeargreyinatime-lapsephotograph–halfwaybetween blackandwhite.

1.5.4Summaryofsection 1.5

Theirreversibilityofspontaneous,naturalprocessesimposesadirectionontime.Such processesarealwaysassociatedwithanincreaseofentropyinthesystemandits surroundings:thisisthesecondlawofthermodynamics.Thegreatertheincreaseof entropythegreaterthedegreeofirreversibility.Onlyreversibleprocessescreateno entropy.Inanisolatedsystementropyisdirectlyrelatedtothenumberofmicrostates thesystemcanaccesswiththeinternalenergythesystemhas.Theirreversibility ofconvertingworkintoheatiscausedbythedispersaloftheenergyamongavery largenumberofmicrostatesofthesystem.Thisdispersalissometimescalledthe ‘degradationofenergy’:energyisconservedwhenitisconvertedintoheatbutitis lesscapableofdoingwork.

1.6Closedsystemsandheatreservoirs

Sofarwehaveconsideredtheentropyofonlyisolatedsystems.Inaclosedsystem theobjectwearestudyingcanexchangeheatwiththeenvironment,butitcannot exchangematter.Totreataclosedsystemweimaginetheobjectofstudyisinthermal contactwithalargeheatreservoirataconstanttemperature Tr.Theroleoftheheat reservoiristoacceptordonateheattokeeptheobjectataconstanttemperatureof Tr.Intheprocessitisassumedtherearenoirreversiblechangesofentropywithinthe reservoirsuchasmixingorchemicalreactions.Thereservoirisinastateofinternal equilibrium.Undertheseconditionsiftheheatreservoirdonatesasmallamountof heat δqrev totheobjectitundergoesareversiblechangeofstateandtheentropy ofthereservoirchangesby δSres = δqrev/Tr.Iftheobjectacceptstheheat δqrev reversiblyitsentropychangesby+δqrev/Tr.Thus,inareversibletransferofheatthe totalchangeofentropyiszero.

Inareversibletransferofheat δqrev fromthereservoirtotheobjecttheinternal energyoftheobjectincreasesby δU = δqrev.Thatisbecausenoworkisdonebyor ontheobjectwhenthechangeofstateinvolvesatransferofheatonly.Butsuppose

13Notethereareblackatomsatthetopleftandbottomrightcornersandwhiteatomsatthetop rightandbottomleftcorners.Thereisanequivalentconfiguration,obtainedbyrotatingthecrystal by ±90◦ aboutthenormaltothepage,wherethepositionsofalltheblackandallthewhiteatoms areinterchanged.Therefore,theentropyofthisconfigurationis kB loge2.

TheHelmholtzfreeenergy 13

thesamechangeofinternalenergy δU = δqrev oftheobjectisbroughtaboutby an irreversible changeofitsstateinwhichwork δw isdoneonitinadditiontoa transferofheat δqirrev.Therefore, δU = δqrev = δqirrev + δw.Thechangeofentropy ofthereservoiris δSres = δqirrev/Tr becauseithaslostheat δqirrev andallchanges ofheatcontentofthereservoiroccurreversibly.Sincetheobjecthasundergonethe samechangeofstateitschangeofentropyremains δSobj = δqrev/Tr becauseentropy isafunctionofstate.Sincethechangeofstateisnowirreversibleitmustbetrue that δSres + δSobj > 0,andtherefore δqrev >δqirrev.Thedifference δqrev δqirrev is providedbythework δw doneontheobjectwhichisdegradedtoheatintheobject.

Ontheotherhand,ifthechangeofstateinvolvesatransferofheatfromtheobject tothereservoir,moreheatistransferredifthechangeofstateoccursirreversiblythan ifitoccursreversibly.Let δqrev and δqirrev betheamountsofheattransferredfrom theobjecttothereservoirinreversibleandirreversiblechangesofstaterespectively. Thechangeintheentropyoftheobjectis δSobj = δqrev/Tr regardlessofwhetherthe changeofstateoccursreversiblyorirreversibly.Thechangeofentropyofthereservoir is δSres =+δqirrev/Tr.Therefore,thetotalchangeofentropyis(δqirrev δqrev)/Tr whichmustbepositive.Thedifference δqirrev δqrev istheworkdonebytheobject thatisdegradedtoheatinthereservoir.

Inbothcasesworkisdegradedtoheatwhenthechangeofstateoccursirreversibly.

1.7TheHelmholtzfreeenergy

Wehaveseenthatinanisolatedsystemequilibriumisachievedwhentheentropy ofthesystemismaximised.Asanisolatedsystemevolvestowardsequilibriumits temperaturechanges.Itismoreusefultohaveacriterionforequilibriuminaclosed systemwherethetemperatureiskeptconstantbyplacingtheobjectincontactwitha thermalreservoir.However,noparticlesleaveorentertheobject.Nevertheless,there canstillbemovementofparticlesandchemicalreactionswithintheobjectresulting innewphases.TheequilibriumcriterionisprovidedbytheHelmholtzfreeenergy, whichisafunctionofinternalenergy,entropyandtemperatureandthereforeitisa functionofstate.

Incaseyouarewonderingwhether‘free’energyistheanswertotheproblemsof theWorld’senergysupplythereisnosuchthingasenergywithoutaneconomiccost. Theuseoftheword‘free’inthiscontextisquitedifferent.Asweshallseeitmeans themaximumenergyavailabletodoworkinasystemheldataconstanttemperature. Betterdescriptorswouldbe‘availablework’or‘usefulenergy’,butwearestuckwith ‘freeenergy’becauseithasbecomecommonusage.

TheHelmholtzfreeenergy A isdefinedastheinternalenergy U minusthetemperature T timestheentropy S,thus A = U TS.Consideranobjectimmersedin alargeheatreservoiratatemperature Tr.Lettheobjectundergoachangefroma statelabelled‘1’toastatelabelled‘2’.TheHelmholtzfreeenergyoftheobjectin state1is A1 = U1 TrS1 andinstate2itis A2 = U2 TrS2.Lettheamountofheat enteringtheobjectingoingfromstate1to2be q.Lettheworkdonebytheobject ingoingfromstate1to2be w.Then U2 U1 = q w.Sincetheinternalenergyisa functionofstate, U2 U1 isindependentofthedegreeofirreversibilityofthechange ofstate.But q and w dodependonthedegreeofirreversibilityinsuchawaythat

Turn static files into dynamic content formats.

Create a flipbook