Combinatorial physics: combinatorics, quantum field theory, and quantum gravity models adrian tanasa

Page 1


CombinatorialPhysics:Combinatorics,Quantum FieldTheory,andQuantumGravityModelsAdrian Tanasa

https://ebookmass.com/product/combinatorial-physicscombinatorics-quantum-field-theory-and-quantum-gravitymodels-adrian-tanasa/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Introduction to Quantum Field Theory with Applications to Quantum Gravity 1st Edition Iosif L. Buchbinder

https://ebookmass.com/product/introduction-to-quantum-field-theorywith-applications-to-quantum-gravity-1st-edition-iosif-l-buchbinder/ ebookmass.com

Quantum Field Theory and Critical Phenomena 5th Edition

https://ebookmass.com/product/quantum-field-theory-and-criticalphenomena-5th-edition-jean-zinn-justin/

ebookmass.com

Quantum Space: Loop Quantum Gravity and the Search for the Structure of Space, Time, and the Universe Baggott

https://ebookmass.com/product/quantum-space-loop-quantum-gravity-andthe-search-for-the-structure-of-space-time-and-the-universe-baggott/ ebookmass.com

Modern Information Optics with MATLAB Yaping Zhang

https://ebookmass.com/product/modern-information-optics-with-matlabyaping-zhang/

ebookmass.com

Someday Away Sara Elisabeth

https://ebookmass.com/product/someday-away-sara-elisabeth/

ebookmass.com

Window on Humanity: A Concise Introduction to General Anthropology 8th Edition, (Ebook PDF)

https://ebookmass.com/product/window-on-humanity-a-conciseintroduction-to-general-anthropology-8th-edition-ebook-pdf/

ebookmass.com

Diagnostic Imaging: Brain 4th Edition Miral D. Jhaveri

https://ebookmass.com/product/diagnostic-imaging-brain-4th-editionmiral-d-jhaveri/

ebookmass.com

Pediatrics Morning Report: Beyond the Pearls 1st Edition Adler Salazar

https://ebookmass.com/product/pediatrics-morning-report-beyond-thepearls-1st-edition-adler-salazar/

ebookmass.com

Corporate spirit: religion and the rise of the modern corporation Amanda Porterfield

https://ebookmass.com/product/corporate-spirit-religion-and-the-riseof-the-modern-corporation-amanda-porterfield/

ebookmass.com

https://ebookmass.com/product/hegels-interpretation-of-the-religionsof-the-world-the-logic-of-the-gods-jon-stewart/

ebookmass.com

COMBINATORIALPHYSICS

CombinatorialPhysics

Combinatorics,quantumfieldtheory,andquantum

gravitymodels

UniversityofBordeaux,France

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©AdrianTanasa2021

Themoralrightsoftheauthorhavebeenasserted

FirstEditionpublishedin2021 Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2021932400 ISBN978–0–19–289549–3 DOI:10.1093/oso/9780192895493.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

ToLuca,Brittany,andtoourfamily

2.1Graphtheory:TheTuttepolynomial7

2.2Ribbongraphs;theBollobás–Riordanpolynomial12

2.3Selectedfurtherreading15

3Quantumfieldtheory(QFT)—built-incombinatorics 17

3.1Definitionofthescalar Φ4 model18

3.2Perturbativeexpansion—Feynmangraphsandtheircombinatorialweights20

3.3Fouriertransform—themomentumspace23

3.4ParametricrepresentationofFeynmanintegrands24

3.5Thepropagatorandtheheatkernel26

3.6Aglimpseofperturbativerenormalization27

3.6.1Thepowercountingtheorem29

3.6.2Locality30

3.6.3Multi-scaleanalysis32

3.6.4ThesubtractionoperatorforageneralFeynmangraph33

3.6.5Dimensionalrenormalization35

3.7Dyson–Schwingerequation36

3.8Combinatorial(or 0-dimensional)QFTandtheintermediatefieldmethod36

3.8.1Combinatorial(or 0-dimensional)QFT36

3.8.2Theintermediatefieldmethod37 3.9Selectedfurtherreading38

4.1Preliminaryresults41 4.2Partitiontreeweights43 4.3Selectedfurtherreading49

5.1TheJacobianConjectureascombinatorialQFTmodel (theAbdesselam–Rivasseaumodel)52

5.2TheintermediatefieldmethodfortheAbdesselam–Rivasseaumodel53

5.3Selectedfurtherreading55

6FermionicQFT,Grassmanncalculus,andcombinatorics 56

6.1GrassmannalgebrasandGrassmanncalculus57

6.1.1TheGrassmannalgebra57

6.1.2Grassmanncalculus;PfaffiansasGrassmannintegrals58

6.2OnGrassmannGaussianmeasures59

6.3Lingström–Gessel–Viennot(LGV)formulaforgraphswithcycles60

6.4Stembridge’sformulasforgraphswithcycles63

6.5Ageneralization66

6.6TuttepolynomialandtheparametricrepresentationinQFT67

6.7Selectedfurtherreading71

7AnalyticcombinatoricsandQFT

8.1Algebraicreminder;CombinatorialHopfAlgebras(CHAs)77

8.2TheConnes–KreimerHopfalgebraofFeynmangraphs79

8.3The B+ operator,HochschildcohomologyoftheConnes–Kreimeralgebra83

8.4Multi-scalerenormalization,CHAdescription85

8.5Selectedfurtherreading94

9QFTonthenon-commutativeMoyalspaceandcombinatorics 95

9.1Mathematicalsetting:Renormalizability96

9.2TheMehlerkernelandtheGrosse–Wulkenhaarmodel99

9.3ParametricrepresentationofGrosse–Wulkenhaar-likemodels100

9.4TheMellintransformandtheGrosse–Wulkenhaarmodel104

9.5DimensionalrenormalizationfortheGrosse–Wulkenhaarmodel107

9.6Aheatkernel–basedrenormalizablemodel108

9.7ParametricrepresentationandtheBollobás–Riordanpolynomial110

9.7.1Parametricrepresentation110

9.7.2Relationbetweenthemulti-variateBollobás–Riordanandthe polynomialsoftheparametricrepresentation111

9.8CombinatorialConnes–KreimerHopfalgebraandits Hochschildcohomology112

9.8.1CombinatorialConnes–KreimerHopfalgebra112

9.8.2HochschildcohomologyandthecombinatorialDSE117

9.9Selectedfurtherreading120

10Quantumgravity,groupfieldtheory(GFT),andcombinatorics 121

10.1Quantumgravity121

10.2Maincandidatesforatheoryofquantumgravity:Theholographicprinciple122

10.3GFTmodels:theBoulatovandthecolourablemodels123

10.4Themulti-orientableGFTmodel125

10.4.1Tadpolesandgeneralizedtadpoles127

10.4.2Tadfaces128

10.5SaddlepointmethodforGFTFeynmanintegrals129

10.6AlgebraiccombinatoricsandtensorialGFT133

10.6.1TheBenGeloun–Rivasseau(BGR)model133

10.6.2Cones–KreimerHopfalgebraicdescriptionofthecombinatorics oftherenormalizabilityoftheBGRmodel143

10.6.3HochschildcohomologyandthecombinatorialDSE fortensorialGFT153

10.7Selectedfurtherreading165

11Fromrandommatricestorandomtensors 166

11.1Thelarge N limit169

11.2Thedouble-scalinglimit169

11.3Frommatricestotensors170

11.4Tensorgraphpolynomials—ageneralizationoftheBollobás–Riordan polynomial174

11.5Selectedfurtherreading176

12Randomtensormodels—the U (N )D -invariantmodel 178

12.1DefinitionofthemodelanditsDSE179

12.1.1 U(N)D -invariantbubbleinteractions179

12.1.2Bubbleobservables182

12.1.3TheDSEforthemodel185

12.1.4Navigatingthefollowingsectionsofthechapter187

12.2TheDSEbeyondthelarge N limit188

12.2.1TheLO188

12.2.2MomentsandCumulants189

12.2.3Gaussianandnon-Gaussiancontributions192

12.2.4TheDSEatNLO198

12.2.5Theorder 1/N D inthequarticmodel199

12.3Thedouble-scalinglimit202

12.3.1Double-scalinglimitintheDSE202

12.3.2Fromthequarticmodeltoagenericmodel206

12.4Selectedfurtherreading208

13Randomtensormodels—themulti-orientable(MO)model 209

13.1Definitionofthemodel209

13.2The 1/N expansionandthelarge N limit212

13.2.1Feynmanamplitudes;the 1/N expansion212

13.2.2Thelarge N limit—theLO(melonicgraphs)214

13.2.3Thelarge N limit—theNLO215

13.2.4LeadingandNLOseries216

13.3Combinatorialanalysisofthegeneraltermofthelarge N expansion219

13.3.1Dipoles,chains,schemes,andallthat220

13.3.2Generatingfunctions,asymptoticenumeration, anddominantschemes226

13.4Thedouble-scalinglimit230

13.4.1Thetwo-pointfunction231

13.4.2Thefour-pointfunction232

13.4.3The 2r -pointfunction232

13.5Selectedfurtherreading233 14Randomtensormodels—the

14.1Generalmodelandlarge N expansion234

14.2Quarticmodel,large N expansion241

14.2.1LargeNexpansion:LO242

14.2.2NLO247

14.3Generalquarticmodel:Criticalbehaviour248

14.3.1Explicitcountingofmelonicgraphs248

14.3.2Diagrammaticequations,LOandNLO252

14.3.3Singularityanalysis253

14.3.4Criticalexponents256

14.4Selectedfurtherreading259

15TheSachdev–Ye–Kitaev(SYK)holographicmodel

15.1DefinitionoftheSYKmodel:ItsFeynmangraphs261

15.2Diagrammaticproofofthelarge N melonicdominance264

15.3ThecolouredSYKmodel271

15.3.1Definitionofthemodel,real,andcomplexversions271

15.3.2Diagrammaticsoftherealandcomplexmodel272

15.3.3MoreonthecolouredSYKFeynmangraphs282

15.3.4Non-Gaussiandisorderaverageinthecomplexmodel284

15.4Selectedfurtherreading290

16SYK-liketensormodels 291

16.1TheGurau–Wittenmodelanditsdiagrammatics292

16.1.1Two-pointfunctions:LO,NLO,andsoon293

16.1.2Four-pointfunction:LO,NLO,andsoon295

16.2The O (N )3 -invariantSYK-liketensormodel300

16.3TheMOSYK-liketensormodel303

16.4RelatingMOgraphsto O (N )3 -invariantgraphs304

16.5Diagrammatictechniquesfor O (N )3 -invariantgraphs306

16.5.1Two-edge-cuts306

16.5.2Dipoleremovals307

16.5.3Dipoleinsertions309

16.5.4Chainsofdipoles310

16.5.5Facelength312

16.5.6Thestrategy314

16.6Degree 1 graphsofthe O (N )3 -invariantSYK-liketensormodel316

16.6.12PI,dipole-freegraphofdegreeone316

16.6.2Thegraphsofdegree1319

16.7Degree 3/2 graphsofthe O (N )3 -invariantSYK-liketensormodel323

AExamplesoftreeweights

A.1Symmetricweights—completepartition331

A.2Onesingletonpartition—rootedgraph332

A.3Twosingletonpartition—multi-rootedgraph333

BRenormalizationoftheGrosse–Wulkenhaarmodel,one-loopexamples

CThe B + operatorinMoyalQFT,two-loopexamples

C.1One-loopanalysis338 C.2Two-loopanalysis338

DExplicitexamplesofGFTtensorFeynmanintegralcomputations

D.1Anon-colourable,MOtensorgraphintegral345

D.2Acolourable,multi-orientabletensorgraphintegral345

D.3Anon-colourable,non-multi-orientabletensorgraphintegral347

G.1Bijectionwithconstellations362

G.1.1Bijectioninthebipartitecase362

G.1.2Thenon-bipartitecase365

G.2Enumerationofcolouredgraphsoffixedorder366

G.2.1Exactenumeration366

G.2.2Singularityanalysis369

G.3TheconnectivityconditionandSYKgraphs371

G.3.1Preliminaryconditions371

G.3.2Thecase q> 3

G.3.3Thecase q =3

G.3.4Thenon-bipartitecase374 HProofofTheorem16.1.1

ISummaryofresultsonthediagrammaticsofthecolouredSYK modelandoftheGur ˘ au–Wittenmodel

Introduction

Theinterplaybetweencombinatoricsandtheoreticalphysicsisarecenttrendwhich appearstousasparticularlynatural,sincetheunfoldingofnewideasinphysicsis oftentiedtothedevelopmentofcombinatorialmethods,and,conversely,problems incombinatoricshavebeensuccessfullytackledusingmethodsinspiredbytheoretical physics.Alotofproblemsinphysicsarethusrevealedtobeenumerative.Ontheother hand,problemsincombinatoricscanbesolvedinanelegantwayusingtheoretical physics-inspiredtechniques.Wecanthusspeaknowadaysofanemergingdomainof CombinatorialPhysics.

Theinterferencebetweenthesetwodisciplinesismoreoveraninterferenceofmultiple facets.Thus,itsmostknownmanifestation(bothtocombinatorialistsandtheoretical physicists)hassofarbeentheonebetweencombinatoricsandstatisticalphysics, orcombinatoricsandintegrablesystems,asstatisticalphysicsreliesonanaccurate counting ofthevariousstatesorconfigurationsofaphysicalsystem.

However,combinatoricsandtheoreticalphysicsinteractinvariousotherways.One oftheseinteractionsistheonebetweencombinatoricsandquantummechanics,because combinatorialtoolscanbeusedhereforabettermathematicalunderstandingofthe algebrasunderlyingquantummechanics.

Inthisbook,wemainlyfocusonyetanothertypeofthesemultipleinteractions betweencombinatoricsandtheoreticalphysics,theonebetweencombinatoricsand quantumfieldtheory(QFT).Weestimatethatcombinatoricsis builtinto themathematicalformulationofQFT.Thisstemsinitiallyfromthefactthatthemostpopular toolofQFTisperturbationtheoryinthecouplingconstantofthemodel,whichmeans thatoneconsidersFeynman graphs,withappropriatecombinatorialweights,inorderto encodethephysicalinformationoftherespectivesystem.Moreover,oneelegantwayof expressingtheFeynmanintegralsassociatedwiththesegraphsistousetheKirchhoff–Symanzikpolynomialsoftheparametricrepresentation,polynomialswhichcanbe proventoberelatedtosomemulti-variateversionofthecelebratedTuttepolynomial ofcombinatorics.Aparticularlyelegantwaytoprovethisistousethe Grassmann development ofthedeterminantsandPfaffiansinvolvedinthesecomputations.Letus emphasizeherethatthisGrassmanndevelopmentusesGrassmanncalculus,whichwere developedbyphysiciststoexpressfermionicQFT.Grassmanncalculusisfurtherusedin thisbooktogiveasimpleproofofthecelebratedLingström–Gessel–Viennot(forgraphs

Introduction withcycles)andtofurthergeneralizesomeidentities,initiallyprovedbyStembridge,in thesamecontextofgraphswithcycles.

Theso-called 0 dimensionalQFT(calledbysomeauthors,combinatorialQFT),or morepreciselytheuseoftheintermediatefieldmethodinthissetting,allowstoestablisha theoremconcerningpartialeliminationofvariablesinthecelebratedJacobianconjecture (whichconcernstheglobalinvertibilityofpolynomialsystems).

Moreover, analyticcombinatorial techniquesareusedonaregularbasisinQFT computations.Thus,thepropagatorofanyscalarmodelcanberepresentedusingthe heatkernel.TheMellintransformtechniquecanalsobeusedinordertorapidlyprove themeromorphyofFeynmanintegrands.Thesaddlepointmethodisfrequentlyusedto tamethedivergentbehaviouroftheseintegrals.

Lastbutnotleast,renormalizationinQFT(whichonecansayliesattheveryheartof QFT)hasahighlynon-trivialcombinatorialcore,andthishasbeenrecentlypresented ina combinatorialHopfalgebra form—theConnes–KreimerHopfalgebra.Relatedtothis, theHochschildcohomologyofthiscombinatorialHopfalgebracanbeusedtoexpress thecombinatoricsoftheDyson–Schwingerequation(DSE)asasimplepowerseriesin someappropriateinsertionoperatorofFeynmangraphs.

Allthesecombinatorialtechniques(analyticoralgebraic)generalizetomoreinvolved QFTmodels.Thus,non-commutativeQFT(thatis,QFTonanon-commutativespacetime)alsopossessesmostofthesecombinatorialproperties.First,thegraphsusedin QFTareupliftedtoribbongraphs(or combinatorialmaps).Furthermore,onecanstill usetheheatkernelforpropagatorsofthetheories,butinordertohaverenormalizable models,oneneedstouseamoreinvolvedspecialfunction,theMehlerkernelorsome non-trivialmodificationoftheheatkernel.Moreover,theMellintransformtechniquecan againbeused,asinthecaseofcommutativeQFT.Thecorrespondingnon-commutative Kirchhoff–Symanzikpolynomialsareproventobealimitofamulti-variateversionof theBollobás–Riordanpolynomial(whichisanaturalgeneralizationforribbongraphs oftheuniversalTuttepolynomial).Finally,algebraiccombinatorialtechniquescanalso beusedinnon-commutativeQFT.ThecorrespondingcombinatorialConnes–Kreimer HopfalgebraofribbonFeynmangraphscanbedefinedandrelatedtonon-commutative renormalization.Furthermore,theappropriateHochschildcohomologythendescribes thecombinatoricsoftheDSEofthesemodels.

Non-commutativeQFTcanalsobeseenasaspecialcaseofthecelebratedmatrix models.Followingthislineofreasoning,onecannaturallygeneralizerandommatrix modelstorandomtensormodels,

Thecombinatoricsoftensormodelsperseisextremelyinvolved.Onecannot just use thegenustocharacterizetheso-calledlarge N expansion, N beingthesizeofthematrix resp.ofthetensor.Itisworthemphasizingherethatthelarge N expansionis,froma combinatorialpointofview,acertainasymptoticexpansion(correspondingtothelimit N →∞).

However,inordertomakethecombinatoricssimpler,severalQFT-inspiredsimplificationsoftensormodelscanbeproposed.Thefirsttwosuchsimplicationswerethe colouredmodelandthemulti-orientablemodels.Forbothofthesemodels,onecan implementthelarge N expansionandthedouble-scalingmechanism,which,inthecase

3 ofmatrixmodels,areveryimportantmathematicalphysicstools.Severalothermodels (basedon U (N ) andthen O (N ) modelshavealsobeenstudied.

Feynmangraphsassociatedtotensormodels,throughthecelebratedQFTperturbativeexpansions,arecalledtensorgraphsandcanbeseenasanatural3Dgeneralizationof mapsorofribbongraphs.Thedominanttermofthelarge N expansionofthepreviously mentionedtensormodelsaretheso-calledmelonicgraphs,whichare,fromagraph theoreticalpointofview,aparticularcaseofseries-parallelgraphs.

Thelarge N expansioniscontrolledinthe2Dcase,thematrixmodelcase,bythe genusofthecorrespondingcombinatorialmaps.Indimensionhigherthantwo,there isnodirectanalogueofthegenus.Nevertheless,thetensorasymptoticexpansionin N iscontrolledbyaninteger,calledthedegree,whichisdefinedasthehalf-sumofthe non-orientablegenusofribbongraphscanonicallyembeddedinatensorgraph(called thejacketsoftherespectivetensorgraphs).Thedegreeisthusahalfinteger,naturally generalizingthe2Dnotionofgenusfortensormodels.

Inordertostudythegeneraltermofthelarge N expansionofvarioussuchtensor models,weextensivelyuse,inthisbook,variousgraphtheoreticaland enumerative combinatorics techniquestoperformtheirenumerationandweestablishwhicharethe dominantconfigurationsofagivendegree.

Itisworthemphasizingherethattensormodelshaverecentlybeenprovenby WittentoberelatedtothecelebratedholographicSachdev–Ye–Kitaev(SYK)quantum mechanicalmodel.Thiscomesfromthefactthat,intheso-calledlarge N expansion (N beinginthecaseoftheSYKmodelthetotalnumberoffermionsofthemodel), bothtypesofmodelsaredominatedbythemelonicgraphs.Thelarge N expansion forvariousSYK-liketensormodelsisthenstudiedusingagaingraphtheoreticaland enumerativecombinatoricstechniques.Thesetechniquesallowustoasymptotically enumerateFeynmangraphsofvariousSYK-liketensormodels.

Thebookisorganizedasfollows.InChapter 2,wepresentsomenotionsofgraph theorythatwillbeusefulintherestofthebook.Itisworthemphasizingthatgraph theoristsandtheoreticalphysicistsadopt,unfortunately,differentterminologies.We presentherebothterminologies,suchthatasortofdictionarybetweenthesetwo communitiescanbeestablished.Wethenextendthenotionofgraphtothatofmaps(or ofribbongraphs).Moreover,graphpolynomialsencodingthesestructures(theTutte polynomialforgraphsandtheBollobás–Riordanpolynomialforribbongraphs)are presented.

InChapter3,webrieflyexhibitthemathematicalformalismofQFT,which,as mentionedpreviously,hasanon-trivialcombinatorialbackbone.TheQFTsettingcan beunderstoodasaquantumdescriptionofparticlesandtheirinteractions,adescription whichisalsocompatiblewithEinstein’stheoryofspecialrelativity.Withintheframework ofelementaryparticlephysics(orhighenergyphysics),QFTledtotheStandard ModelofElementaryParticlePhysics,whichisthephysicaltheorytestedwiththebest accuracybycolliderexperiments.Moreover,theQFTformalismsuccessfullyapplies tostatisticalphysics,condensedmatterphysics,andsoon.Weshowinthischapter howFeynmangraphsappearthroughtheso-calledQFTperturbativeexpansion,how FeynmanintegralsareassociatedtoFeynmangraphs,andhowtheseintegralscanbe

expressedviathehelpofgraphpolynomials,theKirchhoff–Symanzikpolynomials. Finally,wegiveaglimpseofrenormalization,oftheDSE,andoftheuseofthesocalledintermediatefieldmethod.Thischaptermainlyfocusesontheso-called Φ4 QFT scalarmodel.

InChapter4,wedefinespecifictreeweightswhichappearnaturalwhenconsidering acertainapproachtonon-perturbativerenormalizationinQFT,namelyconstructiverenormalization.Severalexamplesofsuchtreeweightsareexplicitlygivenin AppendixA.

Chapter5dealswithacombinatorialQFTapproachtotheJacobianconjecture.The JacobianConjecturestatesthatanycomplex n-dimensionallocallyinvertiblepolynomial systemisgloballyinvertiblewithapolynomialinverse.In1982,Bassetal.proved animportantreductiontheoremstatingthattheconjectureistrueforanydegreeof thepolynomialsystemifitistrueindegreethree.Weshow,inthischapter,aresult concerningpartialeliminationofvariables,whichimpliesareductionofthegenericcase tothequadraticone.Thepricetopayistheintroductionofasupplementaryparameter, 0 ≤ n ≤ n parameter,whichrepresentsthedimensionofalinearsubspacewheresome particularconditionsonthesystemmusthold.Weexhibitaproof,inaQFTformulation, usingtheintermediatefieldmethodexposedinChapter3.

InChapter6,weuseGrassmanncalculus,usedinfermionicQFT,tofirstgivea reformulationoftheLingström–Gessel–Viennotlemmaproof.Wefurthershowthat thisproofgeneralizestographswithcycles.WethenusethesameGrassmanncalculus techniquestogivenewproofsofStembridge’sidentitiesrelatingappropriategraph Pfaffianstoasumovernon-intersectingpaths.Theresultspresentedheregofurther thantheonesofStembridge,becauseGrassmannalgebratechniquesnaturallyextend (withoutanycost!)tographswithcycles.Wethusobtain,insteadofsumsovernonintersectingpaths,sumsovernon-intersectingpathsandnon-intersectingcycles.In thefifthsectionofthechapter,wegiveageneralizationoftheseresults.Inthesixth sectionofthischapterweuseGrassmanncalculustoexhibittherelationshipbetweena multi-variateversionofTuttepolynomialandtheKirchhoff–Symanzikpolynomialsof theparametricrepresentationofFeynmanintegrals,polynomialsalreadyintroducedin Chapters1andresp.3.

InChapter7,wepresenthowseveralanalytictechniques,oftenusedincombinatorics, appearnaturallyinvariousQFTissues.Inthefirstsection,weshowhowonecanuse theMellintransformtechniquetore-expressFeynmanintegralsinausefulwayforthe mathematicalphysicist.Finally,webrieflypresenthowthesaddlepointapproximation techniquecanbealsousedinQFT.

InChapter8,afterabriefalgebraicreminder,weintroduceinthesecondsectionthe Connes–KreimerHopfalgebraofFeynmangraphsandweshowitsrelationshipwith thecombinatoricsofQFTperturbativerenormalization.Wethenstudythealgebra’s HochschildcohomologyinrelationwiththecombinatorialDSEinQFT.Inthefourth, sectionwepresentaHopfalgebraicdescriptionoftheso-calledmulti-scalerenormalization(themulti-scaleapproachtotheperturbativerenormalizationbeingthestarting pointfortheconstructiverenormalizationprogramme).

InChapter9,wepresentthe Phi4 QFTmodelonthenon-commutativeMoyal spaceandtheUV/IRmixingissue,whichpreventsitfrombeingrenormalizable.We thenpresenttheGrosse–Wulkenhaar Phi4 QFTmodelonthenon-commutativeMoyal space,whichchangestheusualpropagatorofthe Φ model(basedontheheatkernel formula)toaMehlerkernel-basedpropagator.ThisGrosse–Wulkenhaarmodelis perturbativelyrenormalizablebutitisnottranslation-invariant(translation-invariance beingausualpropertyofhigh-energyphysicsmodels).WethenshowhowtheMellin transformtechniquecanbeusedtoexpresstheFeynmanintegralsoftheGrosse–Wulkenhaarmodel.Inthelastpartofthechapter,wepresentanother Phi4 QFT modelonthenon-commutativeMoyalspace,whichishoweverbothrenormalizable andtranslation-invariant.Weshowtherelationbetweentheparametricrepresentation ofthismodelandtheBollobás–Riordanpolynomial.Finally,weshowhowtodefinea Connes–KreimerHopfalgebrafornon-commutativerenormalizationandhowtostudy itsHochschildcohomologyinrelationtothecombinatorialDSEoftheseQFTmodels.

Thelastpartofthebookisdedicatedtothestudyofcombinatorialaspectsof quantumgravitymodels.Thus,inChapter10,afterabriefintroductorysectionto quantumgravity,wementionthemaincandidatesforaquantumtheoryofgravity: stringtheory,loopquantumgravity,andgroupfieldtheory(GFT),causaldynamical triangulations,andmatrixmodels.ThenextsectionsintroducesomeGFTmodelssuch astheBoulatovmodel,thecolourable,andthemulti-orientablemodel.Thesaddlepoint methodforsomespecificGFTFeynmanintegralsispresentedinthefifthsection. Finally,somealgebraiccombinatoricsresultsarepresented:definitionofanappropriate Connes–KreimerHopfalgebradescribingthecombinatoricsoftherenormalizationof acertaintensorGFTmodel(theso-calledBenGeloun–Rivasseaumodel)andthe useofitsHochschildcohomologyforthestudyofthecombinatorialDSEofthis specificmodel.

InChapter11,afterabriefpresentationofrandommatricesasarandomsurfaceQFT approachto2Dquantumgravity,wefocusontwocrucialmathematicalphysicsresults: theimplementationofthelarge N limit(N beingherethesizeofthematrix)andofthe doublescalingmechanismformatrixmodels.Itisworthemphasizingthat,inthelarge N limit,itistheplanarsurfaceswhichdominate.Inthethirdsectionofthechapter,we introducetensormodels,seenasanaturalgeneralization,indimensionshigherthentwo, ofmatrixmodels.Thelastsectionofthechapterpresentsapotentialgeneralizationof theBollobás–Riordanpolynomialfortensorgraphs(whicharetheFeynmangraphsof theperturbativeexpansionofQFTtensormodels).

InChapter12,wefirstbrieflypresentthe U (N )D -invarianttensormodels(N being againthesizeofthetensor,and D beingthedimension).Thenextsectionisthen dedicatedtotheanalysisoftheDyson–Schwingerequations(DSEs)inthelargeN limit.Theseresultsareessentialtoimplementthedoublescalinglimitmechanismofthe DSEswhichisdoneinthethirdsection.Themainresultofthischapteristhedoublyscaledtwo-pointfunctionforamodelwithgenericmelonicinteractions.However,several assumptionsonthelarge N scalingofcumulantsaremadealongtheway.Theyare provedusingvariouscombinatorialmethods.

Chapter13isdedicatedtothepresentationofthemulti-orientabletensormodel.After definingthemodel,the 1/N expansionandthelarge N limitareexaminedinthesecond sectionofthechapter.Inthethirdsection,athoroughenumerativecombinatorialanalysis ofthegeneraltermofthe 1/N expansionispresented.Theimplementationofthedouble scalingmechanismisthenexhibitedinthefourthsection.

InChapter14,wedefineyetanotherclassoftensormodels,endowedwith O (N )3 invariance,Nbeingagainthesizeofthetensor.Thisallowstogenerate,via theusualQFTperturbativeexpansion,aclassofFeynmantensorgraphswhichis strictlylargerthantheclassofFeynmangraphsofboththemulti-orientablemodeland the U (N )3 -invariantmodelstreatedintheprevioustwochapters.Wefirstexhibitthe existenceofalargeNexpansionforsuchamodelwithgeneralinteractions(notnecessary quartic).Wethenfocusonthequarticmodelandweidentifytheleadingorder(LO) andnext-to-leading(NLO)Feynmangraphsofthelarge N expansion.Finally,weprove theexistenceofacriticalregimeandwecomputetheso-calledcriticalexponents.This isachievedthroughtheuseofvariousanalyticcombinatoricstechniques.

InChapter15,wefirstreviewtheSYKmodel,whichisaquantummechanical modelof N fermions.Themodelisaquenchedmodel,whichmeansthatthecoupling constantisarandomtensorwithGaussiandistribution.TheSYKmodelisdominated inthelargeNlimitbymelonicgraphs,inthesamewaythetensormodelspresented inthepreviousthreechaptersaredominatedbymelonicgraphs.Wethenpresenta purelygraphtheoreticalproofofthemelonicdominanceoftheSYKmodel.Asalready mentioned,itisthispropertywhichledE,wittentorelatetheSYKmodeltothecoloured tensormodel.Intherestofthechapterwedealwiththeso-calledcolouredSYKmodel, whichisaparticularcaseofthegeneralizationoftheSYKmodelintroducedbyD. GrossandV.Rosenhaus.WefirstanalyseindetailtheLOandNLOordervacuum,twoandfour-pointFeynmangraphsofthismodel.Wethenexhibitathoroughasymptotic combinatorialanalysisoftheFeynmangraphsatanarbitraryorderinthelarge N expansion.Weendthechapterbyananalysisoftheeffectofnon-Gaussiandistribution forthecouplingofthemodel.

InChapter16,weanalyseindetailthediagrammaticsofvariousSKY-liketensor models:theGurau–Wittenmodel(inthefirstsection),andthemulti-orientableand O (N )3 -invarianttensormodels,intherestofthechapter.Variousexplicitgraph theoreticaltechniquesareused.

2

Graphs,ribbongraphs, andpolynomials

Inthischapter,wepresentsomenotionsofgraphtheorythatwillbeusefulinthe restofthisbook.Letusemphasizethatgraphtheoristsandquantumfieldtheorists adopt,unfortunately,differentterminologies.Wepresentbothhere,suchthatasortof dictionary betweenthesetwocommunitiesmaybeestablished.

Wethenextendthenotionofgraphstothatofmaps(orofribbongraphs).Moreover, graphpolynomialsencodingthesestructures(theTuttepolynomialforgraphsandthe Bollobás–Riordanpolynomialforribbongraphs)arepresented.

Inthischapter,wefollowtheoriginalarticle(ThomasKrajewskietal.2010)andthe reviewarticle(AdrianTanasa2012).

2.1Graphtheory:TheTuttepolynomial

Forageneralintroductiontographtheory,theinterestedreadermayrefertoClaude Berge(1976).Letusnowdefineagraphinthefollowingway:

Definition2.1.1 Agraph Γ isdefinedasasetofvertices V andofedges E togetherwithan incidencerelationshipbetweenthem.

Noticethatweallowmulti-edgesandself-loops(seedefinition2.1.2 4),butstilluse theterm‘graph’(andnot‘pseudograph’).

Thenumberofverticesandedgesinagrapharealsonoted V and E forsimplicity, sinceourcontextpreventsconfusion.

OneneedstoemphasizethatinQFTasupplementarytypeofedgeexists, external edges.Theseedgesareonlyhookedtooneoftheverticesofthegraph,theotherend oftheedgebeing‘free’(seeFig.2.1foranexampleofsuchagraph,withfourexternal edges).Inelementaryparticlephysics,theseexternaledgesarerelatedtotheobservables insomeexperiments.

Graphs,ribbongraphs,andpolynomials

Figure2.1 A Φ4 graph,withfourinternaledgesandfourexternaledges

Letusnowgivethefollowingdefinition:

Definition2.1.2

1. Thenumberofedgesatavertexiscalledthe degree oftherespectivevertex(field theoristsrefertothisasthe coordinationnumber oftherespectivevertex).

2. Anedgewhoseremovalincreasesthenumberofconnectedcomponentsofthe respectivegraphiscalleda bridge (fieldtheoristsrefertothisasa 1-particle reducible edge).

3. Aconnectedsubsetofequalnumberofedgesandofverticeswhichcannotbe disconnectedbyremovinganyoftheedgesiscalleda cycle (fieldtheoristsrefer tothisasa loop).

4. Anedgewhichconnectsavertextoitselfiscalleda self-loop (fieldtheoristsreferto thisasa tadpole edge).

5. Anedgewhichisneitherabridgenoraself-loopiscalled regular

6. Anedgewhichisnotaself-loopiscalled semi-regular

7. Agraphwithnocyclesiscalleda forest.

8. Aconnectedforestiscalleda tree.

9. A two-tree isaspanningtreewithoutoneofitsedges.

10. The rank ofasubgraph A isdefinedas

where k (A) isthenumberofconnectedcomponentsofthesubgraph A.

11. The nullity (or cyclomaticnumber)ofasubgraph A isdefinedas

Remark2.1.3 Foraconnectedgraph,thenullitydefinedpreviouslyrepresentsthenumberof independentcircuits.

InQFT,oneoftenusestheterm(numberof)loopstodenote(thenumberof) independentloops.

Figure2.2 Anexampleofagraph(withsevenedgesandsixexternaledges).Wechoseaspanningtree andlabelleditsedgesby1,..., 4.Wethenchosetheedge3toberemoved.Theset{1,2,4}isatwo-tree; onehastwoconnectedcomponents(thefirstoneformedbytheedges1and2andthesecondoneformed byedge4).Theexternaledgesareattachedtooneofthesetwoconnectedcomponents

Remark2.1.4 Atwo-treegeneratestwoconnectedcomponentsontherespectivegraph.Letus alsonotethatatwo-treecanbedefinedasaspanningforestwithtwoconnectedcomponents(in thisway,norelationwithatreeisgiven).

LetusillustratethisinFig.2.2.Onecandefinetwonaturaloperationsforanarbitrary edge e ofsomegraph Γ:

1.thedeletion,whichleadstoagraphnoted Γ e;

2.thecontraction,whichleadstoagraphnoted Γ/e.Thisoperationidentifiesthe twovertices v1 and v2 attheendsof e intoanewvertex v12 ,attributingallthe edgesattachedto v1 and v2 to v12 ;finally,thecontractionoperationremoves e

Remark2.1.5 If e isaself-loop,then Γ/e isthesamegraphas Γ e.

Foranillustrationofthesetwooperations,onecanrefertoFig.2.3,wherethese operationsareiterateduntilonereaches terminalforms namelygraphsformedonly ofself-loopsandbridges.

LetusnowgiveafirstdefinitionoftheTuttepolynomial:

Definition2.1.6 If Γ isagraph,thenitsTuttepolynomial TΓ (x,y ) isdefinedas

AfundamentalpropertyoftheTuttepolynomialisadeletion/contractionproperty:

Graphs,ribbongraphs,andpolynomials

Figure2.3 Thedeletion/contractionofsomegraph.Oneisleftwithvariouspossibilities(herefive)of terminalforms(thatis,graphswithonlybridgesorself-loops)

Theorem2.1.7 If Γ isagraph,and e isaregularedge,then

ThispropertyoftheTuttepolynomialisoftenusedasitsdefinition,ifonecompletes itbygivingtheformoftheTuttepolynomialonterminalforms:

where m isthenumberofbridgesand n isthenumberofself-loops.

Multi-variate(orweighted)versionsoftheTuttepolynomialexistintheliterature. Thus,intheseminalpaper,AlanD.Sokal(2005)analysedindetailsuchamulti-variate polynomial.Themainideaisthefollowing:oneintroducesasetofvariables β1 ,...,βE , oneforeachedge,andavariable q ,insteadofthecoupleofvariables x and y oftheTutte polynomial.

Othermulti-variateversionscanalsobefoundintheliteraturebuttheyareessentially equivalenttotheSokalpolynomialafterappropriatechangesofvariables.Nevertheless, thisisnotthecaseforthepolynomialsdefinedinZaslavsky(1992)andBollobásand Riordan(1992)(seealsoEllis-MonaghanandTraldi(2006)forgeneralizations).

Letusgivethedefinitionofthefollowingmulti-variateversionoftheTutte polynomial:

Graphtheory:TheTuttepolynomial 11

Definition2.1.8 If Γ isagraph,thenitsmulti-variateTuttepolynomialisdefinedas

Similarly,onecanprovethatthemulti-variateTuttepolynomial (2.6) satisfiesthe deletion/contractionrelation,foranyedge e.Thedefinitionofthepolynomialonthe terminalforms(graphswith v isolatedvertices)is

Onecanprove(throughdirectinspection)therelationbetweentheTuttepolynomial (2.3) anditsmulti-variatecounterpart (2.6):

Itisthisversionofthemulti-variateTuttepolynomial (2.6) thatweuseinthisbookto provetherelationwiththeparametricrepresentationofFeynmanintegralsinQFT(see Chapter6.6).

PuttingasidetheTuttepolynomial,severalgraphpolynomialshavebeendefinedand extensivelystudiedintheliterature.Aswehaveseenpreviously,theTuttepolynomial isatwo-variablepolynomial.Ithasone-variablespecializations,suchasthechromatic polynomialortheflowpolynomial.

The chromaticpolynomial isagraphpolynomial PΓ (k ) (k ∈ N )whichcountsthe numberofdistinctwaystocolourthegraph Γ with k orfewercolours,colouringsbeing countedasdistincteveniftheydifferonlybypermutationofcolours.Foraconnected graph,thispolynomialisrelatedtotheTuttepolynomial (2.3) bytherelation

Inordertodefinetheflowpolynomial,weneedafiniteabeliangroup G.One canarbitrarilychooseanorientationforeachedgeofthegraph Γ,theresultbeing independentofthischoice(thesametypeofsituationappearswhencomputingFeynman integrals,seenextsection).A G flow on Γ isamapping

thatsatisfiescurrentconservationateachvertex.A G flowon Γ issaidtobe nowherezero if ψ (e) =0 forall e.Let FΓ (G) bethenumberofnowhere-zero G flowson Γ.One canprovethatthisnumberdependsonlyontheorder k ofthegroup G;itcanthusbe written FΓ (k )—itistherestrictiontonon-negativeintegersofapolynomialin k ,the flow polynomial

Graphs,ribbongraphs,andpolynomials

Onehas:

AcrucialpropertyoftheTuttepolynomialisitspropertyof universality.This propertystatesthatanyTutteinvariant(i.e.anygraphpolynomialsatisfyingdeletion/contractionpropertyandamultiplicativelawongraphdisjointreunionandonevertexjoint)isanevaluationoftheTuttepolynomial.Thispropertyisprovedinthe combinatoricsliteraturebycarefullyusinginductionargumentsontheedgesofthe graph.

LetusendthissectionbyemphasizingthattheTuttepolynomial(anditsmulti-variate versionthatwehavepresentedhere)extendsinanaturalmannertothemoreinvolved combinatorialnotionof matroids (seeagainSokal(2005)).

2.2Ribbongraphs;theBollobás–Riordanpolynomial

Inthissection,weintroduceanaturalgeneralizationofthenotionofgraphs—ribbon graphsormaps.Forageneralintroductiontocombinatorialmaps,theinterestedreader mayrefertoGuillaumeChapuy’sPhDthesisChapuy(2009)ortoGillesSchaeffer’suse (2009).

Letusdefinesucharibbongraphinthefollowingway:

Definition2.2.1 A ribbongraph Γ isanorientablesurfacewithitsboundaryrepresented astheunionofcloseddisks,alsocalled vertices,andribbonsalsocalled edges,suchthat: thedisksandribbonsintersectindisjointlinesegments,eachsuchlinesegmentlyingonthe boundaryofpreciselyonediskandoneribbonandfinally,everyribboncontainingtwosuch linesegments.

Notethat,asinthecaseofgraphs,thisdefinitioncanbeextendedbyaddinganew typeofedge(notwithtwolinesegments,seethepreviousdefinition)suchthat external edges areallowed(seeprevioussubsection).Examplesofsuchgraphsaregivenin Figs.2.4and2.5.

Letusalsomentionthatribbongraphscanbedefinedasgraphsequippedwitha cyclicorderingoftheincidenceedgesateachvertexorasgraphsembeddedinsurfaces (thelatterwasactuallythemathematicalobjectonwhichB.BollobásandO.Riordan definedtheirgeneralizationoftheTuttepolynomialinBollobásandRiordan(2001)and BollobásandRiordan(2002),seefollowingsection).

Aninteresting connectionbetweentheTuttepolynomialofgraphsandcombinatorialmaps wasproveninBernardi(2008).HegaveacharacterizationoftheTuttepolynomialof graphswhichisdifferenttotheinitialonegivenbyTutte(whichrequiredsomechoice oflinearorderontheedgeset,inordertowritetheTuttepolynomialasafunctionof

Ribbongraphs;theBollobás–Riordanpolynomial

Figure2.4 Anexampleofaribbongraphwithonevertex,oneinternaledge,andtwoexternaledges

Figure2.5 Anexampleofaribbongraphwithtwovertices,threeinternaledges,andtwoexternaledges spanningtrees).O.BernardiprovedthattheTuttepolynomialcanalsobewrittenasthe generatingfunctionofspanningtreescountedwiththehelpofacyclicorderoftheedges aroundeachvertex.

Letusnowgivethefollowingdefinition:

Definition2.2.2 A face ofaribbongraphisaconnectedcomponentofitsboundaryasa surface.

Forexample,thegraphofFig.2.4hastwofaces,whiletheoneofFig.2.5hasasingle face.IfwegluedisksalongthefacesweobtainaclosedRiemannsurfacewhosegenusis alsocalledthe genus ofthegraph.

Definition2.2.3 Theribbongraphiscalled planar ifithasvanishinggenus.

Forexample,thegraphofFig.2.4isplanarwhiletheoneofFig.2.5isnon-planar(it hasgenus 1).

Turn static files into dynamic content formats.

Create a flipbook
Combinatorial physics: combinatorics, quantum field theory, and quantum gravity models adrian tanasa by Education Libraries - Issuu