Chemistry in quantitative language: fundamentals of general chemistry calculations ,2nd edition oria

Page 1


https://ebookmass.com/product/chemistry-in-quantitativelanguage-fundamentals-of-general-chemistry-calculations-2nd-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

eTextbook 978-0134015187 Fundamentals of General, Organic, and Biological Chemistry

https://ebookmass.com/product/etextbook-978-0134015187-fundamentalsof-general-organic-and-biological-chemistry/ ebookmass.com

General Chemistry 11th Edition, (Ebook PDF)

https://ebookmass.com/product/general-chemistry-11th-edition-ebookpdf/

ebookmass.com

General chemistry for engineers Gaffney

https://ebookmass.com/product/general-chemistry-for-engineers-gaffney/

ebookmass.com

Thomas' Calculus in SI Units 14th Edition Hass

https://ebookmass.com/product/thomas-calculus-in-si-units-14thedition-hass/

ebookmass.com

Arabella Georgette Heyer

https://ebookmass.com/product/arabella-georgette-heyer-2/

ebookmass.com

Explanation Beyond Causation: Philosophical Perspectives on Non-Causal Explanations Alexander Reutlinger (Editor)

https://ebookmass.com/product/explanation-beyond-causationphilosophical-perspectives-on-non-causal-explanations-alexanderreutlinger-editor/ ebookmass.com

Swedish Legends and Folktales John Lindow

https://ebookmass.com/product/swedish-legends-and-folktales-johnlindow/

ebookmass.com

Project Management 5th edition Edition Harvey Maylor

https://ebookmass.com/product/project-management-5th-edition-editionharvey-maylor/

ebookmass.com

Modern Thermodynamics for Chemists and Biochemists 2nd Edition Dennis Sherwood

https://ebookmass.com/product/modern-thermodynamics-for-chemists-andbiochemists-2nd-edition-dennis-sherwood/

ebookmass.com

https://ebookmass.com/product/harrisons-manual-of-medicine-20thedition-dennis-l-kasper/

ebookmass.com

ChemistryinQuantitativeLanguage

CHEMISTRYINQUANTITATIVELANGUAGE

FundamentalsofGeneralChemistryCalculations

ChristopherO.Oriakhi,CChem,FRSC

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©ChristopherO.Oriakhi2021

Themoralrightsoftheauthorhavebeenasserted FirstEditionpublishedin2009 SecondEditionpublishedin2021

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData

Dataavailable

LibraryofCongressControlNumber:2021937954

ISBN978–0–19–886778–4

DOI:10.1093/oso/9780198867784.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

Preface

Thisisthesecondeditionof ChemistryinQuantitativeLanguage.Iampleasedthatthefirst edition,publishedin2009,wassowellreceivedbybothinstructorsandstudents.However,asis typicalwithmostbooksintheirfirstedition,theusersgraciouslyprovidedseveralconstructive suggestionstomakethebookmoreusefulfortheintendedaudience.Inaddition,onmypart,a decadelaterIfindtheneedtoaddafewtopicsandconceptsthatwereleftoutofthefirstedition,as wellastheneedtoreorganizethechaptersandupdatetheworkedexamplesandend-of-chapter problemstomakethebookmoreuseful.Allofthesehavearmedmewiththemotivationand insightsnecessarytopreparethissecondedition.Formulatingandsolvingquantitativechemistry problemsremainsaconcernformanystudents.Thiseditionsharesthesameobjectiveofmaking problem-solvinginchemistrymorepleasurableandexciting,sostudentscanhopefullyfacetheir examinationswitheaseandpasswithflyingcolors.

Thissecondeditionhasbeenrevisedextensivelyandincorporatesmanyminorchangesthan canbeincludedhere.Themostsignificantchangesinclude:

•Theoriginalfirsttwochapters(EssentialMathematicsandSystemofMeasurement)have beenremovedandmadeavailableintheAppendix.

•Ihaveaddedprincipalnewmaterialsbrokendownintotwonewchapters(Chemical Bonding1:BasicConcepts,andChemicalBonding2:ModernTheoriesofChemical Bonding)asthesearefoundationalcollegechemistrymaterials;thelatterchapterdeals specificallywithmolecularshapesandstructure.

•ThroughoutthebookIhaveaddednewproblemswithvaryingdegreeofdifficulties,while othershavebeencombined,revised,orreplaced.

ThroughoutthebookIhaveadheredtothephilosophybehindthefirstedition,whichwasto introducetheconceptsoftheunderlyingchemistryfollowedbyaseriesofworkedexampleto showstudentshowthecalculationsaredoneandtohopefullyenablethemtoappreciatewhat isinvolved.Attheendofeachchapterareaseriesofproblemsthatrangefromverysimpleto thoserequiringmoretimeandenergy.Eachprobleminthebookhasbeensolvedandchecked independentlybyTedLaPage.AnswersforalltheproblemsareintheSolutionstoProblems chapterattheendofthebook.

Ifyouhaveusedthisbookandfoundanyerrorsorhavecomments,suggestions,and recommendationsforfuturerevisionsandadditions,pleasefeelfreetoreachouttomebyemail atoriakhi@gmail.comorbycontactingOxfordUniversityPress.

Acknowledgement

PreparationofthesecondeditionofChemistryinQuantitativeLanguagebenefitedgreatlyfrom theimmensesupportandencouragementofmyfamilyandsomeamazingfriends,colleagues, andstudents.

IbeginbyexpressingmysincereappreciationtoTedLaPageforhisindispensablecontributionstothisedition.Inadditiontohisgreatsenseofhumor,dedication,andfriendship,Tedread theentiremanuscript,solvedtheproblems,andsuggestedmanyimprovementsinbothcontent andstyle.

Suggestionsandconstructivefeedbackfromstudentsandfacultywhohaveusedthebookare particularlyhelpfulanddeeplyappreciated.Manyofyoursuggestionshavebeenincorporated intothisrevision.

IalsothankthevariouspersonsatOxfordUniversityPressespeciallyKatherineWard,Sonke Adlung,andHarrietKonishifortheirdedicationandfriendlysupportingettingthisprojectto thefinishlineinarecordtime.

Finally,thisacknowledgementwouldbeincompletewithoutsayinghowmuchIappreciate thelove,patience,support,andencouragementIreceivedfrommyfamilyandfriendsatalltimes. Inparticular,Idedicatethiseditiontothememoryofmother,MrsIkhiwiOriakhi,whoinspired thiswork.

6ChemicalEquations

6.3TypesofChemicalReactions46 6.4Problems48

7Stoichiometry

7.1ReactionStoichiometry50

7.2InformationFromaBalancedEquation50

7.3TypesofStoichiometricProblem50

7.4LimitingReagents57

7.5ReactionYields:Theoretical,Actual,andPercentYields59 7.6Problems60

8StructureoftheAtom

8.1ElectronicStructureoftheAtom64

8.2ElectromagneticRadiation64

8.3TheNatureofMatterandQuantumTheory66

8.4TheHydrogenAtom67

8.5TheQuantum-MechanicalDescriptionoftheHydrogenAtom70

8.6QuantumMechanicsandAtomicOrbitals71

8.7ElectronicConfigurationofMultielectronAtoms75

8.8Problems78

9ChemicalBonding1:BasicConcepts 81

9.1Introduction:TypesofChemicalBonds81

9.2LewisDotSymbols81

9.3IonicBonding:FormationofIonicCompounds83

9.4CovalentBonding:LewisStructuresforMolecules86

9.5CovalentBonding:WritingLewisStructures86

9.6ResonanceandFormalCharge88

9.7ExceptionstotheOctetRule91

9.8PolarCovalentBonds:BondPolarityandElectronegativity93

9.9Problems98

10ChemicalBonding2:ModernTheoriesofChemicalBonding

10.1VSPERTheory:MolecularGeometryandtheShapesofMolecules102

10.2VSEPRTheory:PredictingElectronGroupGeometryandMolecularShape withtheVSEPRModel103

10.3VSEPRTheory:PredictingMolecularShapeandPolarity107

10.4ValenceBondTheory110

10.5ValenceBondTheory:TypesofOverlap111

10.6Hybridization112

10.7LimitationsofValenceBondTheory119 10.8MolecularOrbitalTheory120 10.9Problems125

11GasLaws 129

11.1StandardTemperatureandPressure129

11.2Boyle’sLaw:VolumevsPressure129

11.3Charles’sLaw:VolumevsTemperature130

11.4TheCombinedGasLaw132

11.5Gay-Lussac’sLawandReactionsInvolvingGases134

11.6Avogadro’sLaw136

11.7TheIdealGasLaw137

11.8DensityandMolecularMassofaGas139 11.9MolarVolumeofanIdealGas140

11.10Dalton’sLawofPartialPressure142

11.11PartialPressureandMoleFraction143

11.12RealGasesandDeviationfromtheGasLaws144

11.13Graham’sLawofDiffusion146

11.14Problems148

12LiquidsandSolids 152

12.1TheLiquidState152

12.2VaporPressureandtheClausius–ClapeyronEquation152 12.3TheSolidState155

12.4TheCrystalSystem156

12.5CalculationsInvolvingUnitCellDimensions159

12.6IonicCrystalStructure165

12.7TheRadiusRatioRuleforIonicCompounds167

12.8DeterminationofCrystalStructurebyX-RayDiffraction171

12.9Problems174

13SolutionChemistry 177

13.1SolutionandSolubility177

13.2ConcentrationofSolutions178

13.3SolvingSolubilityProblems188

13.4EffectofTemperatureonSolubility191

13.5SolubilityCurves191

13.6EffectofPressureonSolubility193 13.7Problems194

14VolumetricAnalysis 199

14.1Introduction199

14.2ApplicationsofTitration199

14.3CalculationsInvolvingAcid-BaseTitration200 14.4BackTitrations206

14.5KjeldahlNitrogenDetermination210 14.6Problems212

15IdealSolutionsandColligativeProperties 214

15.1ColligativeProperties214

15.2VaporPressureandRaoult’sLaw214

15.3ElevationofBoilingPoint217

15.4DepressionofFreezingPoint220

15.5OsmosisandOsmoticPressure222

15.6Problems225

16ChemicalKinetics 228

16.1RatesofReaction228

16.2MeasurementofReactionRates228 16.3ReactionRatesandStoichiometry233 16.4CollisionTheoryofReactionRates234 16.5RateLawsandtheOrderofReactions235

16.6ExperimentalDeterminationofRateLawUsingInitialRates236

16.7TheIntegratedRateEquation240

16.8Half-LifeofaReaction246

16.9ReactionRatesandTemperature:TheArrheniusEquation248 16.10Problems250

17ChemicalEquilibrium 255

17.1ReversibleandIrreversibleReactions255

17.2TheEquilibriumConstant255

17.3TheReactionQuotient259

17.4PredictingtheDirectionofReaction259

17.5PositionofEquilibrium260

17.6HomogeneousvsHeterogeneousEquilibria261

17.7CalculatingEquilibriumConstants262

17.8CalculatingEquilibriumConcentrationsfrom K 263

17.9QualitativeTreatmentofEquilibrium:LeChatelier’sPrinciple268 17.10Problems273

18IonicEquilibriaandpH 276

18.1TheIonizationofWater276 18.2DefinitionofAcidityandBasicity276

18.3ThepHofaSolution277

18.4ThepOHofaSolution278

18.5TheAcidIonizationConstant, Ka 280

18.6CalculatingpHandEquilibriumConcentrationsinSolutionsofWeakAcids280 18.7PercentDissociationofWeakAcids283

18.8TheBaseDissociationConstant, Kb 285

18.9RelationshipBetween Ka and Kb 286 18.10SaltHydrolysis:Acid–BasisPropertiesofSalts288 18.11TheCommonIonEffect292

18.12BuffersandpHofBufferSolutions293 18.13PolyproticAcidsandBases298 18.14MoreAcid–BaseTitration301 18.15pHTitrationCurves303 18.16Problems308

19SolubilityandComplex-IonEquilibria 313 19.1SolubilityEquilibria313

19.2TheSolubilityProductPrinciple313 19.3Determining Ksp fromMolarSolubility314

19.4CalculatingMolarSolubilityfrom Ksp 316

19.5 Ksp andPrecipitation318

19.6Complex-IonEquilibria320 19.7Problems323

20Thermochemistry 325 20.1Introduction325 20.2CalorimetryandHeatCapacity325 20.3Enthalpy327

20.4Hess’sLawofHeatSummation331 20.5LatticeEnergyandtheBorn–HaberCycle333 20.6BondEnergiesandEnthalpy335 20.7Problems338

21ChemicalThermodynamics 344

21.1DefinitionofTerms344

21.2TheFirstLawofThermodynamics344 21.3ExpansionWork345 21.4Entropy348

21.5TheSecondLawofThermodynamics348 21.6CalculationofEntropyChangesinChemicalReactions348 21.7FreeEnergy352 21.8TheStandardFreeEnergyChange352 21.9EnthalpyandEntropyChangesduringaPhaseChange355

21.10FreeEnergyandtheEquilibriumConstant356

21.11Variationof G0 andEquilibriumConstantwithTemperature358 21.12Problems361

22OxidationandReductionReactions 365 22.1Introduction365

22.2OxidationandReductioninTermsofElectronTransfer365

22.3OxidationNumbers(ON)366

22.4OxidationandReductioninTermsofOxidationNumber368

22.5DisproportionationReactions369

22.6OxidizingandReducingAgents369

22.7Half-CellReactions371

22.8BalancingRedoxEquations372

22.9Oxidation-ReductionTitration381 22.10Problems385

23FundamentalsofElectrochemistry 389 23.1GalvanicCells389

23.2TheCellPotential389

23.3StandardElectrodePotential390

23.4TheElectrochemicalSeries(ECS)391

23.5ApplicationsofElectrodePotential391

23.6CellDiagrams393

23.7Calculating E 0 cell fromElectrodePotential394

23.8RelationshipoftheStandardElectrodePotential,theGibbsFreeEnergy, andtheEquilibriumConstant396

23.9DependenceofCellPotentialonConcentration(theNernstEquation)399

23.10Electrolysis402

23.11Faraday’sLawsofElectrolysis402 23.12Problems408

24RadioactivityandNuclearReactions 412

24.1Definitions412

24.2RadioactiveDecayandNuclearEquations412 24.3NuclearTransmutations415

24.4RatesofRadioactiveDecayandHalf-Life416

24.5EnergyofNuclearReactions419 24.6Problems423

AppendixA 427

A.1Essentialmathematics427

A.2Significantfiguresandmathematicaloperations428

A.3Scientificnotationandexponents429

A.4Logarithms432

A.5Algebraicequations434

B.1Systemsofmeasurement445

B.2Measurementofmass,length,andtime446

B.3Temperature447

B.4Derivedunits448

B.5Densityandspecificgravity449

B.6Dimensionalanalysisandconversionfactors451

AtomicStructureandIsotopes

1.1AtomicTheory

In1808,basedonexperimentaldataandchemicallawsknowninhisday,Daltonproposedhis theoryoftheatom.Thetheorystatesthat:

1.Allchemicalelementsaremadeupoftinyindivisibleparticlescalledatoms.

2.Atomscannotbecreatedordestroyed.Chemicalreactionsonlyrearrangethe way thatthe atomsarecombined.

3.Atomsofthesameelementareidenticalinallrespectsandhavethesamemassesand physicalandchemicalproperties.Atomsofdifferentelementshavedifferentmassesas wellasdifferentphysicalandchemicalproperties.

4.Acombinationofelementstoformacompoundoccursbetweensmall,whole-number ratiosofatoms.

Dalton’stheoryresultedintheformulationofthelawofconservationofmassandthelaw ofmultipleproportions.Alongwiththelawofdefiniteproportionandthelawofreciprocal proportion,theseformthebasisofreactionstoichiometry(seeChapter7).

1.1.1Thelawofconservationofmass

Inachemicalreaction,matterisneithercreatednordestroyed.Thetotalmassofreactantsisequal tothetotalmassoftheproducts.ThislawwasfirststatedbyLavoisier,basedonhisfindings fromcombustionexperiments.

1.1.2Thelawofdefiniteproportion

Thelawofdefiniteproportions(alsoknownasProust’slaworthelawofconstantcomposition) statesthatagivenchemicalcompoundisalwayscomposedofthesameelementsinthesame proportionsbymass.Whenelementscombinetoformaparticularcompound,theydosoin fixedandconstantproportionsbymass,regardlessofthesourceofthecompound.Forexample, asampleofpurewater,regardlessofitssource,alwayscontains11.1%hydrogenand88.9% oxygen.

1.1.3Thelawofmultipleproportions

Iftwoelementscanformmorethanonecompoundbetweenthem,themassesofoneelement, whichcombinewithafixedmassofthesecondelement,areinaratioofwholenumbers.For example,nitrogenandoxygencombinetoformcompoundssuchasNO,NO2 ,andN2 O,inwhich theratioofnitrogenatomsperoxygenatomisrespectively1,½,and2.Thisisoneofthebasic lawsofstoichiometry,aswediscussinChapter7.

1.1.4Thelawofreciprocalproportions

AccordingtotheLawofReciprocalProportions(alsoknownasthelawofequivalentproportions orthelawofpermanentratios),iftwodifferentelements,AandB,chemicallycombine separatelywithafixedmassofathirdelement,D,theratioofthemassesinwhichtheydo soareeitherthesameasorasimplemultiple(orsimplefraction)oftheratioofthemassesin whichAandBcombinewitheachother.Forexample,carbonreactswithsulfurtoformcarbon disulfide(CS2 )andwithoxygentoformcarbondioxide(CO2 ).Sulfurandoxygen,meanwhile, combinetoformsulfurdioxide(SO2 ),inwhichtheratioofsulfurtooxygenis1:2,whichis½ the1:1ratioofsulfurtooxygeninthecarboncompounds.

1.2TheStructureoftheAtom

Anatomconsistsofacentralnucleus,whichcontainsroughly99.9%ofthetotalmassofthe atom,andasurroundingcloudofelectrons.Thenucleusiscomposedoftwokindsofparticles, protonsandneutrons,whicharecollectivelyknownasnucleons.Theprotonispositivelycharged, whiletheneutroniselectricallyneutral.Theelectronshaveanegativechargeandsurroundthe nucleusin“shells”ofdefiniteenergylevels.(Note:energylevelisdiscussedinChapter8.)In aneutral(unreacted)atom,thenumberofelectronsequalsthenumberofprotons,sotheatom hasachargeofzero.Itmustbementionedthatthechemistryofagivenatomcomesfromits electrons;allchemicalchangestakeplaceentirelywithregardtotheelectrons—thenucleus isneveraffectedbychemicalreactions.Thepropertiesofthethreesub-atomicparticlesare summarizedinTable1.1.

1.2.1Atomicnumber(Z)

Theatomicnumberofanelementisdefinedasthenumberofprotonsinthenucleusofanatom oftheelement.Itisalsoequaltothenumberofelectronsinaneutralatom.Atomicnumberisa characteristicofagivenelementanddeterminesitschemicalproperties.

Table1.1 Propertiesofsubatomicparticles

FundamentalparticleSymbolLocationMass(g)Mass(amu)Charge

1.2.2Massnumber(A)

Themassnumberofanelementisthesumofprotonsandneutronsinthenucleusoftheatom.

Massnumber (A) = No. ofprotons (Z) + No. ofneutrons (N) A = Z + N

Thegeneralsymbolforanelement,showingitsmassnumberandatomicnumber,is:

A = massnumberinatomicmassunits (amu)

Z = atomicnumber

E = symboloftheelementasshownontheperiodictable

Forexample,thesymbolsforCandMg,showingtheirmassandatomicnumbers,are: 12 6 Cand 24 12 Mg

1.2.3Ions

Anionisanatomorgroupofatomsthathasgainedorlostelectron(s).Apositivelycharged ionresultswhenanatomlosesoneormoreelectrons.Conversely,anegativelychargedionis formedwhenanatomgainsoneormoreelectrons.Forexample,asodiumatom,Na,losesone electrontoformasodiumion,Na+ ;anitrogenatom,N,gainsthreeelectronstoformanitrogen (ornitride)ion,N3 . Letustrytodeterminethenumberofprotons,electrons,andneutronsintheCa2+ ion.A neutralCaatomhastwentyelectronsandtwentyprotons(atomicnumber = 20).ACa2+ ion however,hastwentyprotonsandeighteenelectrons(foranetchargeof +2).Themassnumber, whichisthesumofprotonsandneutrons,isforty;sincetheionhastwentyprotons,itmusthave 40–20 = 20neutrons.

Example1.1

Determinethenumberofprotons,neutrons,andelectronsin

(a) 23 11 Na (b) 16 8 O2 (c) 56 26 Fe3+ (d) 63 29 Cu

Solution

Thesolutionsaresummarizedinthefollowingtable.

SymbolProtonsNeutronsElectrons

(a) 23 11 Na111211

(b) 16 8 O2 8810

(c) 56 26 Fe3+ 263023

(d) 63 29 Cu293429

Example1.2

Completethefollowingtable.

ParticleAtomicMassNumberofNetchargeSymbolEn± numbernumberprotonsneutronselectrons

Tocompletethistable,youneedtorecallthebasicdefinitionsandthegeneralequation:Mass number(A) = No.ofprotons(Z) + No.ofneutrons(N).Usetheperiodictabletoidentify thecorrespondingsymbols.Alsorememberthatatomicnumberisequaltothenumberof protonsinthenucleusofanatom.Inaneutralatom(zerocharge),thenumberofelectronsis alwaysequaltothenumberofprotons.Thedifferencebetweenthenumberofprotonsandthe numberofelectronsisthechargeontheatomicparticle.Ifthenumberofprotonsisgreater thanthenumberofelectrons,theparticletakesonanetpositivecharge,andvice-versa.The completetableis

ParticleAtomicMassNumberofNetchargeSymbolEn± numbernumberprotonsneutronselectrons

1.3Isotopes

Isotopesareatomsthathavethesameatomicnumber,andhencearethesameelement,butthat havedifferentmassnumbers(thatis,differentnumbersofneutrons).Thedifferenceinmassis duetothevariationintheneutronnumber.Isotopeshavepracticallythesamechemicalproperties butdifferslightlyinphysicalproperties.Mostelementsexhibitisotopy.Forexample,hydrogen hasthreeisotopes:hydrogen,deuterium,andtritium.Theatomicnumbersandmassnumbersare showninTable1.2.

Table1.2 Thehydrogenisotopes

Hydrogen(H)Deuterium(D)Tritium(D)

Atomicnumber111

Massnumber123

Example1.3

Whichofthefollowingareisotopes?

a) 18 9 Fand 18 10 Ne

b) 2 1 Hand 3 1 H

c) 40 19 Kand 40 20 Ca

d) 24 12 Mgand 25 12 Mg

Solution

Isotopesareatomswiththesameatomicnumberbutdifferentmassnumber.Hereonly(b) and(d)areisotopes.

1.4RelativeAtomicMass

Therelativemassofanatomiscalledatomicmass(oldertextbookscallit“atomicweight”) andischaracteristicofeachelement.Themassofanindividualatomisdifficulttomeasure,but therelativemassesoftheatomsofdifferentelementscanbemeasured,andthisdeterminesthe atomicmass.

Themassesofindividualatomsandmoleculesareexceedinglysmallandcannotbeconvenientlyexpressedingramsorkilograms.Forexample,oneatomofCahasamassof 6 64 × 10 23 g.Forthisreason,scientistsinsteadusearelativeatomicmassscale.Scientistshave chosenthecarbon-12isotopeasareference,anditsmassisdefinedasexactlytwelveatomicmass units(amu).Thereforeoneatomicmassunitisequalto 1 12 ofthemassofthecarbon-12atom. Oneamuhasbeendeterminedexperimentallytobe1.66 × 10 24 g.

Therelativeatomicmassofanelementisdefinedasthemassofanatomofthatelement comparedwith 1 12 ofthemassofthecarbon-12isotope.

Theatomicmassesofelementsgivenintheperiodictablearenotthesameasmassnumber.In nature,mostelementsoccurasamixtureofisotopes.Therefore,theatomicmassofanelement isanaveragemassbasedontheabundanceoftheisotopes.

1.4.1Calculatingatomicmasses

Theinformationneededtocalculatetheatomicmassesofelementsincludes:thenumberof isotopesfortheelement,therelativemassofeachisotopeonthecarbon-12scale,andthepercent abundanceofeachisotope.

Theatomicmassofagivenelementisthenobtainedasthesumoftheproductoftheexactmass ofeachisotopeanditspercentabundance.Forexample,naturallyoccurringcarbonconsistsof

amixtureof98.89%carbon-12(12 6 C)withamassof12.00000amu,and1.11%carbon-13(13 6 C) withamassof13.00335amu.Theatomicmassisobtainedasfollows: Atomicmass = (12 00000amu) 98 89

+ (13 00335amu)

Aninstrumentcalledthemassspectrometermeasurestheexactmassofeachisotopeandits relativeabundance.

Example1.4

Calculatetheaverageatomicmassoflithium,whichisamixtureof7.5% 6 Liand92.5% 7 Li. Theexactmassesoftheseisotopesare6.01amuand7.02amu.

Solution

Multiplyingtheabundanceofeachisotopebyitsatomicmassandthenaddingtheseproducts givestheaverageatomicmass. AverageatomicmassofLi = (6 01amu)

+ (7 02amu)

Example1.5

Boron,B,withanatomicmassof10.81,iscomposedoftwoisotopes, 10 Band 11 B,weighing 10.01294and11.00931amu,respectively.Whatisthefractionandpercentageofeachisotope inthemixture?

Solution

Lettheabundanceof 10 BbeXandthatof 11 Bbe1 Xsincethereareonlytwoisotopesof boron.Therefore,

Atomicmass = 10 81 = (X) (10 01294) + (1 X) (11 00931)

NowsolveforX: 10 81 = 10 01294X + 11 0093 11 0093X 10.0129X 11.0093X = 10.81 11.0093 0.9964X =−0.1993

X = 0 20or20%and1 X = 0 80or80%

Thefractionand%of 10 Bis0.20or20%.Also,thefractionof 11 Bis0.80or80%.

1.5Problems

1.Howmanyprotons,neutrons,andelectronsareineachofthefollowing?

(a) 197 79 Au (b) 10 5 B (c) 40 20 Ca (d) 163 66 Dy

2.Howmanyprotons,neutrons,andelectronsareineachofthefollowing?

(a) 84 36 Kr (b) 24 12 Mg (c) 69 31 Ga (d) 75 33 As

3.Findthenumberofprotons,neutrons,andelectronsinthefollowingions:

(a) 59 27 Co2+ (b) 24 12 Mg2+ (c) 69 31 Ga3+ (d) 118 50 Sn2+

4.Identifythefollowingatomsorions.

(a)Ahalogen(anelementingroupVIIoftheperiodictable)anionwiththirty-six electronsandthirty-fiveprotons.

(b)Analkalimetal(anelementingroupIoftheperiodictable)cationwithfifty-five protonsandfifty-fourelectrons.

(c)Atransitionmetalcationwithtwenty-fiveprotonsandtwenty-threeelectrons.(Note: TransitionelementsarethoseelementsembeddedbetweengroupsIIandIIIinthe periodictable).

5.Completethefollowingtable. Symbol 40 20 Ca2+ 79 34 Se2 137 56 Ba2+ Massnumber23815 Protons15 Neutrons161468 Electrons88 Netcharge 3 3

6.Withtheaidofaperiodictable,identifythefollowingelements: (a) 56 26 X; (b) 131 53 X; (c) 202 80 X; (d) 19 9 X

7.Fillintheblanksinthefollowingtable:

ParticleAtomicMassNumberofNetchargeSymbol numbernumberprotonsneutronselectrons

A3580 1 B13143 C3115P3 D242824 E35170 F541310 G2048180 H40514Zr4+

8.Findthenumberofprotons,neutrons,andelectronsinthefollowingions: (a) 32 16 S2 (b) 80 35 Br (c) 128 52 Te2 (d) 14 7 N3

9.Naturallyoccurringchlorinehastwoisotopes,whichoccurinthefollowingabundance: 75.76% 35 17 Cl,withanisotopicmassof34.9689amu,and24.24% 37 17 Cl,withaisotopic mass36.9659amu.Calculatetheatomicmassofchlorine.

10.Boronhastwonaturallyoccurringisotopes:80%of 11 5 B,and20%of 10 5 B,whichhasan isotopicmassof10.02amu.Iftheatomicmassofboronis10.81,whatistheisotopic massof 11 5 B?

11.Naturallyoccurringoxygengasconsistofthreeisotopes.Usetheinformationinthetable tocalculatetheatomicmassofoxygengas.

IsotopeExactmassAbundance

12.Naturallyoccurringgallium(Ga)existsintwoisotopicforms, 69 Gaand 71 Ga.Theatomic massofGais69.72.Whatisthepercentageabundanceofeachisotope?(Theexact isotopicmassesof 69 Gaand 71 Gaare68.9259and70.9249,respectively).

FormulaandMolecularMass

Manychemistsusetheterms formulamass and molecularmass interchangeablywhendealing withchemicalcompoundsofknownformula.Thischapterexplainstheslightdifferencebetween thetwoterms.

2.1FormulaMass

Theformulamassofacompoundisthesumoftheatomicmassesofalltheatomsinaformula unitofthecompound,whetheritisionicormolecular(covalent).

Theformulamassisbasedontheratioofdifferentelementsinaformula,asopposedto themolecularmass,whichdependsontheactualnumberofeachkindofatom(compareto Section4.2).Formulamassesarerelativesincetheyarederivedfromrelativeatomicmasses. Forexample,theformulamassofphosphoricacid,H3 PO4 ,is97.98atomicmassunits(amu) andisobtainedbyaddingtheatomicmasses(takenfromtheperiodictable)oftheelementsin oneformulaunit(i.e.3H + 1P + 4O).

(3 × At.wt.ofH) + (1 × At.wt.ofP) + (4 × At.wt.ofO) = (3 × 1.00) + (1 × 30.97) + (4 × 16.00) = 97.97

2.2MolecularMass

Oncetheactualformulaofachemicalsubstanceisknown,themolecularmasscanbedetermined inamannersimilartothatforcalculatingtheformulamass.The molecularmass ofacompound isthesumoftheatomicmassesofalltheatomsinonemoleculeofthecompound.Theterm appliesonlytocompoundsthatexistasmoleculessuchasH2 O,SO2 ,andglucose,C6 H12 O6 Forexample,themolecularmassofethanol,C2 H5 OH,is

(2 × C) + (6 × H) + (1 × O)

= (2 × 12.0) + (6 × 1.0) + (1 × 16.0) = 46 ChemistryinQuantitativeLanguage:FundamentalsofGeneralChemistryCalculations.SecondEdition. ChristopherO.Oriakhi,OxfordUniversityPress.©ChristopherO.Oriakhi2021. DOI:10.1093/oso/9780198867784.003.0002

Turn static files into dynamic content formats.

Create a flipbook