https://ebookmass.com/product/calculus-set-free-
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Redwood Coast Rescue Box Set Books 1-3 Tonya Burrows
https://ebookmass.com/product/redwood-coast-rescue-box-setbooks-1-3-tonya-burrows/ ebookmass.com
Wolf to the Rescue Terry Spear
https://ebookmass.com/product/wolf-to-the-rescue-terry-spear-2/ ebookmass.com
Wolf to the Rescue Terry Spear
https://ebookmass.com/product/wolf-to-the-rescue-terry-spear-4/ ebookmass.com
The Sleeping Girls : An absolutely addictive crime thriller packed with pulse-pounding twists (Detective Ellie Reeves Book 9) Rita Herron
https://ebookmass.com/product/the-sleeping-girls-an-absolutelyaddictive-crime-thriller-packed-with-pulse-pounding-twists-detectiveellie-reeves-book-9-rita-herron/ ebookmass.com
Curating and Re-Curating the American Wars in Vietnam and Iraq Christine Sylvester
https://ebookmass.com/product/curating-and-re-curating-the-americanwars-in-vietnam-and-iraq-christine-sylvester/
ebookmass.com
The Insiders' Game: How Elites Make War and Peace
Elizabeth N. Saunders
https://ebookmass.com/product/the-insiders-game-how-elites-make-warand-peace-elizabeth-n-saunders/
ebookmass.com
The Way You Are Lea Coll
https://ebookmass.com/product/the-way-you-are-lea-coll/
ebookmass.com
This Is Bioethics: An Introduction Ruth F. Chadwick & Udo Schuklenk [Chadwick
https://ebookmass.com/product/this-is-bioethics-an-introduction-ruthf-chadwick-udo-schuklenk-chadwick/
ebookmass.com
Knowledge Management Toolkit, The: Practical Techniques for Building a Knowledge Management System Amrit Tiwana
https://ebookmass.com/product/knowledge-management-toolkit-thepractical-techniques-for-building-a-knowledge-management-system-amrittiwana/ ebookmass.com
Teaching Students Who are Exceptional, Diverse, and At Risk in the General
https://ebookmass.com/product/teaching-students-who-are-exceptionaldiverse-and-at-risk-in-the-general-ebook-pdf-version/
ebookmass.com
CALCULUSSETFREE CalculusSetFree: InfinitesimalstotheRescue CharlesBryanDawson
UniversityProfessorofMathematics,UnionUniversity,USA
GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom
OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries
©C.BryanDawson2022
Themoralrightsoftheauthorhavebeenasserted Impression:1
Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove
Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer
PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica
BritishLibraryCataloguinginPublicationData Dataavailable
LibraryofCongressControlNumber:2021937201
ISBN978–0–19–289559–2(hbk.)
ISBN978–0–19–289560–8(pbk.)
DOI:10.1093/oso/9780192895592.001.0001
Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY
LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.
3.3LocalExtrema
3.9Newton’sMethod
IVIntegration 4.1Antiderivatives
4.2FiniteSums
4.3AreasandSums
4.4DefiniteIntegral
4.5FundamentalTheoremofCalculus
4.6SubstitutionforIndefiniteIntegrals
4.7SubstitutionforDefiniteIntegrals
4.8NumericalIntegration,PartI
4.9NumericalIntegration,PartII
4.10InitialValueProblemsandNetChange
VTranscendentalFunctions 5.1Logarithms,PartI
5.2Logarithms,PartII
5.3InverseFunctions
5.4Exponentials
5.5GeneralExponentials
5.6GeneralLogarithms
5.7ExponentialGrowthandDecay
5.8InverseTrigonometricFunctions
5.9HyperbolicandInverseHyperbolicFunctions
5.10ComparingRatesofGrowth
5.11LimitswithTranscendentalFunctions:L’Hospital’sRule,PartI 827
5.12L’Hospital’sRule,PartII:MoreIndeterminateForms
5.13FunctionswithoutEnd
VIApplicationsofIntegration 6.1AreabetweenCurves
6.2Volumes,PartI
6.3Volumes,PartII 907
6.4ShellMethodforVolumes 919
6.5Work,PartI 935
6.6Work,PartII
7.4TrigonometricSubstitution
7.5PartialFractions,PartI
7.6PartialFractions,PartII
7.7OtherTechniquesofIntegration
7.8StrategyforIntegration
7.9TablesofIntegralsandUseofTechnology
VIIIAlternateRepresentations:ParametricandPolarCurves 8.1ParametricEquations
8.2TangentstoParametricCurves
8.3PolarCoordinates
8.4TangentstoPolarCurves
8.5ConicSections
8.6ConicSectionsinPolarCoordinates
IXAdditionalApplicationsofIntegration 9.1ArcLength
9.4LengthsandSurfaceAreaswithParametricCurves
9.5HydrostaticPressureandForce
9.6CentersofMass
9.7ApplicationstoEconomics
9.8LogisticGrowth
XSequencesandSeries PrefacefortheStudent Formany,thestudyofcalculusisseenasariteofpassage—toconquercalculusistopassthroughthegatewaytothesciences,engineering,mathematics,business,economics,technology,andmanyotherfields. Forsome,thestudyofcalculusisindicativeofachievement,ahallmarkofaqualityeducation.Afewcan’t waittostudycalculus,theircuriosityoverflowingwithenthusiasm.Yetothersseecalculusasanannoyance,somethingtotolerateinpursuitofmoreimportantormoreinterestingsubjects.Thisbookisforall ofyou.
Whateveryourreasonforstudyingcalculus,itismyhopethatthistextfacilitatesnotjustthemastering oftechnicalskillsandtheunderstandingofmathematicalconcepts,butalsotraininginthinkinginapatient, systematic,disciplined,andlogicalmanner.Althoughtechnicalskillscanbeusefulforsomestudentsin theircareers,andtheunderstandingofmathematicalconceptscanbeofusetoevenmore,thehabitsof mindcreatedbycarefulthinkingcanbeofusetoeveryone,atanytime,inanyplace.
Preparationforsuccess Ifyouhavelearnedtodriveacar,thenyoumayrecallhowdrivingtookmuchconsciousthoughtatfirst; butlater,withpractice,drivingbecamemuchmoreofabackgroundtask.Thesameistrueofaddition andmultiplicationfacts;thetask2+4takesverylittlementalenergy.Thisisthehallmarkofdeeplearning: whenataskhasbeenlearnedthoroughly,thenitcanbeperformedaccuratelywithlittleeffort.
Successincalculusismucheasierifbasicalgebraicandtrigonometricskillshavebeenlearnedthis deeply.Ifthequadraticformulaandlawsofexponentscanbeappliedaccuratelyupondemand,thenthe mindisfreetoconcentrateontheconceptsathand.Ifnot,theninsteadofjugglingthreenewconcepts consciously,adozenormoredistractingitemsthatmustberelearnedcompetewiththenewconceptsfor mentalenergy,hamperingone’slearningofthenewmaterial.
Mentalskill-buildingismuchthesameasphysicalskill-building;ittakestimeandconsistentefforton thepartofthelearner.Liftingweightsseveraltimesperweekforamonthisamuchmoreeffectivestrategy thanwaitinguntilthenightbeforetheskillstesttotrytocramtheentiremonth’srepsintooneevening’s workout.Body-buildingsimplydoesnotworkthatway,andneitherdoeslearningmathematics.
Onefinalbitofadvice:learnfromfailure.Everyonemakeserrors,eventextbookauthorswithdecades ofexperienceinthesubject.Nooneisperfect.Butwhenyoumakeanerror,makesureyouunderstand whyitwasanerror,whyadifferentapproachmustbeused,andhowtoavoidmakingthesameerrorin thefuture.Thereisoftensomethingtobelearnedfromyourerrors.Mistakesarenottobefeared,butto beusedtoyouradvantage!
Featuresofthistextbook Whatmakesthistextbookdifferent?Themostobviousansweristhatitusesinfinitesimals,whichare infinitelysmallnumbersthatyoumightnothaveencounteredinyourpreviouscourses.
x PrefacefortheStudent
Althoughinfinitesimalswereanessentialpartofthedevelopmentofcalculus,theyhavebeenabsent fromnearlyallcalculustextbooksformorethanacentury.Thelargestfactorintheswitchawayfrom infinitesimalswasthefactthat,atthetime,noonehadbeenabletodeveloprigorouslytherequirednumber system.Thisstateofaffairschangedduringthe1960s,andnowtheuseofinfinitesimalsisonceagain seenasmathematicallylegitimate.UsingnotationandproceduresthatIhavedevelopedandpublished, thestudyofcertainportionsofcalculusinthistextisbothmoreintuitiveandsimpleralgebraicallythan inothercalculustextbooks.
Additionalfeaturesinclude:
• Areadableandstudent-friendlynarrative. Thenarrativeiswrittentohelpyouthinkthroughthe developmentofconceptsandthinkthroughsolutionstoexamples.Followingthethinkingprocess helpsyoucreatemeaningandretainideasmoreeasily.
• Readingexercises. Readingexercisesaremeanttobeworkedwhenencounteredduringreading. Thesolutionisplacedinthemarginonetothreepageslater.
• Hundredsofdiagrams. Consistencyofcolorusethroughoutthetext’sdiagramshelpswith interpretation.
• Marginnotes. Marginnotesareusedtoaddexplanations,tips,cautionsagainstmakingcommon errors,andhistoricalnotes.
• Examples. Hundredsofexampleswithcompletesolutionsareincluded.Somesolutionsarewritten compactly,demonstratingthelevelofdetailexpectedofstudentwork.Othersincludemoredetails ofhowtothinkthroughthesolution.
• Thousandsofexercises. Exercisesrangefromtheroutinetothechallenging.Manysectionsinclude “rapid-response”exercisesmeanttohelpyoudistinguishbetweenobjectsoralgebraicforms.Some exercisesareverysimilartoexamplesinthenarrative.Otherexercisesrequireyoutothinkcreatively orexploretheideasmoredeeply.Sometimesexercisesfrommucholdertextbooksareincluded,such asthoselabeled“(GSL)”fromtheclassicearly-20th-centurytextofGranville,Smith,andLongley.
• Answerstoodd-numberedexercises. Theanswerstoodd-numberedexercisessometimesinclude hints,briefexplanationsofwhysomeattemptedanswersareincorrect,alternateformsofanswers, orbothsimplifiedandnonsimplifiedanswerstohelpyoudeterminethesourceofanerror.
• Anextensiveindex.
Itismyprayerthatthistextbookisablessingtoyou,thatithelpsyouunderstandtheconceptsand developtheskillsofcalculusasyoucontinueyoureducationaljourney.Enjoy! BryanDawson UniversityProfessorofMathematics UnionUniversity
July2021
PrefacefortheInstructor Thistextbookcoverssingle-variablecalculusthroughsequencesandseries,andcorrespondstothefirst twosemestersofcollege-levelcalculusatmostuniversitiesintheUnitedStates.Theorganizationissimilar tothatofotherpopularcalculustexts.
Whatmakesthistextbookdifferentisitsuseofinfinitesimals(andhyperrealnumbersingeneral)for alllimitingprocesses,includingthedefinitionsofderivativeandintegral.Thenotationandprocedures usedwithhyperrealnumbersinthistextbook(whichdifferfromthoseusedinothernonstandardanalysis sources)weredevelopedbyme1 andwereintroducedinarticlesin TheAmericanMathematicalMonthly (February2018)and TheCollegeMathematicsJournal (November2019),withadditionalarticlesplanned. Theutilityofthehyperrealnumbersreachesintootherareasofthecalculusaswell,suchascomparing ratesofgrowthoffunctionsandarelatedprocedurefortestingseries.
Inadditiontomakingcalculusconceptsmoreintuitive,theuseofinfinitesimalscorrespondsmore closelytothewayourcolleaguesinotherdisciplinesteachstudentstoanalyzetheirideas.Theprocedures usedinthistextbookforlimitsarealsoconnectedmoredirectlytothedefinitions,arealgebraicallysimpler, andaremetwithamuchgreaterdegreeofstudentsuccess.
Additionaldifferencesfromothertextbooksincludethesplittingofsomematerialintotwosectionsto facilitatemoreeasilythemultiple-daycoveragetypicalofthosetopics,aswellassomeminorreorganization oftopicscomparedtootherbooks.
Featuresofthistextbook Featuresofthistextbookinclude:
• Areadableandstudent-friendlynarrative. Thenarrativeiswrittentohelpstudentsthinkthrough thedevelopmentofconceptsandthinkthroughsolutionstoexamples.
• Readingexercises. Readingexercisesaremeanttobeworkedwhenencounteredduringreading. Thesolutionisplacedinthemarginonetothreepageslater.
• Hundredsofdiagrams. Consistencyofcolorusethroughoutthetext’sdiagramshelpswith interpretation.Forinstance,graphsoffunctionsarebluewhereastangentlinesareorange.
• Marginnotes. Marginnotesareusedtoaddexplanations,tips,cautionsagainstmakingcommon errors,andlinkstobiographiesontheMacTutorHistoryofMathematicswebsite.
• Examples. Hundredsofexampleswithcompletesolutionsareincluded.Somesolutionsarewritten compactly,demonstratingthelevelofdetailexpectedofstudentwork.Othersincludemoredetails ofhowtothinkthroughthesolution.
• Thousandsofexercises. Exercisesrangefromthesimpleandtheroutinetothechallenging.Many sectionsinclude“rapid-response”exercisesmeanttohelpstudentsdistinguishbetweenobjectsor
1 SeetheAcknowledgmentssectionforoneexception.
algebraicforms;theseexercisescouldbeconsideredforin-classroomuse.Someexercisesarevery similartoexamplesinthenarrative.Otherexercisesrequirestudentstothinkcreativelyorexplore theideasmoredeeply.Sometimesexercisesfrommucholdertextbooksareincluded(oradapted forinclusion),suchasthoselabeled“(GSL)”fromtheclassicearly-20th-centurytextofGranville, Smith,andLongley.
Enoughexercisesareincludedtoallowyoutohavechoicesofwhichodd-numberedexercisesto includetocraftanappropriatehomeworkset.Even-numberedexercisescorrespondroughlytooddnumberedexercisesforadditionalstudentpractice.Althoughitisnowcommontofindsolutionsto textbookexercisesontheinternet,Istillfollowthecustomofonlyprovidingtheanswerstooddnumberedexercisesinthetextbook.
• Answerstoodd-numberedexercises. Theanswerstoodd-numberedexercisessometimesinclude hints,briefexplanationsofwhysomeattemptedanswersareincorrect,alternateformsofanswers, orbothsimplifiedandnonsimplifiedanswerstohelpstudentsdeterminethesourceofanerror.
• Areviewsectiononavoidingcommonerrors. Eachsubsectionofsection0.6focusesonone particulartypeoferrorsothatyoucanreferstudentstohelpasneeded.Forinstance,studentswho arepronetocancellationerrorscanbereferredtosection0.6“Cancellation.”Theexercisesineach subsectionaredesignedtohelpstudentsrecognizewhethersuchanerrorhasbeenmade,inthe hopesofhelpingthemavoidsucherrorsinthefuture.
• Anextensiveindex.
Another,perhapsunusual,featureofthistextbookisthatitdoesnotcontainfictitiousnamesinword problemsanditdoesnotcontainanygender-specificwordsaftertheprefaces.
Teachinginfinitesimals Sections1.1–1.3containbasicideas,notation,concepts,andproceduresformanipulatinghyperrealnumbers.JustasweallowcalculusstudentstouserealnumberswithoutfirstsubjectingthemtoDedekindcuts, studentsshouldbeallowedtousehyperrealnumberswithoutreferencetoultrafilters.Aswithastudent’s introductiontoanyothertypeofnumber,thesesectionshelpastudentlearnwhatinfinitesimalsandother hyperrealsare,howtomanipulatethemalgebraically,andwheretheyfitonnumberlines.Notethatthe symbols ε and δ arenotusedforinfinitesimalsinthisbook,becausethesesymbolsmaybeusedforreal numbersinlatercourses.
Sections1.1–1.3arefundamentalforworkingwithhyperrealsandthereforeshouldbecoveredthoroughlyandmasteredbythestudent.Icoveronesectionper50-minuteclassperiod,spendingthreeclass daystotalonthismaterial.
Section1.3givesstudentstheopportunitytopracticethecalculationsinvolvedinfindinglimits;then, insection1.4,studentscanconcentrateontheconceptoflimitshavingalreadylearnedthemanipulations. Thisseparationalsoallowstheflexibilitytoskiplimitsandcoversections1.8and2.1onthederivative immediatelyaftersection1.3,orcoversections4.2–4.4onsumsandthedefiniteintegralimmediatelyafter section1.3.However,itisassumedthatatsomepointthestudentslearnthematerialinsections1.4–1.7. Whatissometimesknownasthe directsubstitutionproperty oflimits,whichiscalled evaluatinglimits usingcontinuity inthistextbook,isnotcovereduntilsection1.7.Thisallowstheverificationofcontinuity
insection1.6tobebothnaturalandmeaningful.Whatothertextbookscall limitlaws arenotnecessaryin thiscurriculum;theequivalentisimplicitinthemanipulationsofsections1.1–1.3.
Moreaboutsectiondependencies Chapter0isentirelyoptional.Iusuallycoversections0.4and0.5priortobeginningchapter1.Section 1.0isalsooptionalandmaybeskipped;muchofthismaterialisrepeatedinsection1.8.
Section3.6,limitsatinfinity,canbecoveredimmediatelyaftersection1.5.Althoughsections3.5and 3.7oncurvesketchingarenotstrictlynecessaryforlatermaterial,itismyopinionthatmoststudentslearn propertiesofgraphsbestiftheysketchafewbyhand.
Section4.1canbedelayeduntiljustbeforesection4.5,onthefundamentaltheorem.Sections4.8and 4.9canbedelayedaslongasyoudesire.
Theorderofchapters5and6canbeswapped,andtheorderofsectionsinchapter6canbevaried. Sections5.13,7.7,and7.9areeasilyomitted.Althoughtheuseofl’Hospital’sruleinsections5.11and 5.12istraditional(andIstillcoverit),manyofthelimitsofthesesectionscanbecalculatedinotherways, suchasusingtechniquesfromsection5.10andfromseriesinsection10.10.
Sections9.2and9.4dependonportionsofchapter8,butothersectionsinchapter9canbecovered afterchapter7or,withajudiciousselectionofexercises,alongwithchapter6.Sections8.1–8.4canbe coveredasearlyasimmediatelyfollowingchapter5,ifdesired.
Finally,asisusualincalculustextbooks,numeroussectionscontainsubsectionsuponwhichnolater materialdepends.Thisallowsyoutocoverfavorite(sub)topics.However,coverageofeveryproblemtype demonstratedinthenarrativemaynotalwaysbepractical.
Acknowledgments Ithankmywifeforherpatiencewithmewhileembarkingonthelongjourneyofwritingthisbook.Without hersupport,thisprojectwouldnotexist.
ThefirstcolleaguetojoinmeinteachingcalculususingtheseinfinitesimalmethodswasTroyRiggs (UnionUniversity).Troysuggestedtheuseofthesymbol =forrenderingarealresult(seesection1.3)and wasthefirsttousethesymbolintheclassroom.HeandIspentmorehoursthaneitherofuswishtoadmit discussingtheuseofinfinitesimalideas,andthesediscussionswereessentialtothisproject’ssuccess. Otherswhoclassroom-testedapreliminaryversionofthistextareGeorgeMoss(UnionUniversity), NicholasZoller(SouthernNazareneUniversity),andMoNiazi(SouthernNazareneUniversity).
Thanksalsogotothehundredsofstudentswhoprovidedencouragementandfeedback,bothexplicitly andimplicitly.Knowinghowstudentsinteractwiththematerialhasshapedmanyaspectsofthisbook.
Additionalthankstocolleaguesincludeeditorialboardsandrefereesofarticlesandbookproposals;administratorswhograntedaresearchleaveandotherreleasetimetowrite;andmanyotherswhoparticipated inhallwaydiscussions,attendedmyworkshops,orprovidedencouragement.
Theseedforinvestigatinginfinitesimalmethodsincalculuswasplantedbyastudentinacalculusclass in2004,RobertMichael,whoaskedmanyquestionsaboutinfinitesimalstowhichIdidnothaveadequate answers.Thatseedsatdormantforseveralyears,butwhenitsprouted,itgrewlargerthanIcouldhave imagined.
Somejourneystakegenerations.Mypaternalgrandfather’sformaleducationendedaftertheeighth grade(asitdidforallbutoneofmygrandparents).Hewasasharecropper,leasingthesamelandyear byyearfornearlyfourdecades.Someoneonceaskedhimwhyheneverpurchasedlandofhisown.His replywasthatifhepurchasedland,hecouldleavealegacyforoneofhischildren;ifheinsteadspent thatmoneyforcollegeeducations,hecouldleavealegacyforallfiveofhischildren.Myfathermajored inmathematicsandthenenrichedmymathematicaleducationenoughasachildtoinstillacuriositythat ledtoanacademiccareer.Inadditiontopassingthatlegacyontomyownchildren,itismyprivilegeasa professortohelpotherfamiliesbuildtheirlegacies.Whatablessing!
Last,IthankmyCreator,notonlyforgivingmelife,butalsoforgivingmetheinsightskeytothe developmentoftheinfinitesimalmethodsandfornotlettingmequitwhenIweariedofthejourney.
IwillblesstheLordwhohasgivenmecounsel; Myheartalsoinstructsmeinthenightseasons.
Psalm16:7NKJV
Ihaveoftenprayedthatthistextbookwillbeablessingtobothstudentsandinstructors.Mayitalways beso.
BryanDawson UniversityProfessorofMathematics UnionUniversity
July2021
Chapter0 Review AlgebraReview,PartI Someofyouhavealreadylearnedalgebra
andtrigonometryatadeep levelandarereadytojumpintochapter1withconfidence.Others needtospendtimeinthischapter,perhapsmuchtime.Themore accuratelyandreadilyonecanperformalgebra,themoreeasilyone canlearncalculus.Ifitisneeded,aninvestmentintimeandeffort nowwillpaygreatdividendslater.
Becausethematerialofchapter0isareview,thenarrativeisrelativelysparse.Motivationanddevelopmentofformulasarenotalways presented.
Realnumberline Theword algebra derivesfromthename ofthefirstbookaboutalgebra, Hisab al-jabrw’al-muqabala,writtenbyAbuJa’far MuhammadibnMusaAl-Khwarizmi.
AbuJa’farMuhammadibnMusaAl-Khwarizmi,780–850(approximately) http://www-history.mcs.st-andrews.ac.uk/ Biographies/Al-Khwarizmi.html.TheMac TutorHistoryofMathematicsarchive, hostedbytheUniversityofSt.Andrews inScotland,isoneofthemosttrusted sourcesforthehistoryofmathematics.The websitehasbeeninoperationsincebefore theturnofthecentury.Linkstobiographies ofmathematiciansinthisbookaretothe MacTutorarchive.
Thefirstnumbersachildlearnsarethecountingnumbers,1,2,3, , andsoon,alsoknownasthe naturalnumbers N.Thesenumbersare picturedonahorizontalline,equallyspaced,withlargernumbersto therightandsmallernumberstotheleft(figure 1). 1234
Nextonelearnsthe integers Z,whichincludethenaturalnumbers, theirnegatives,andzero.Thesearealsoplacedonthenumberline (figure 2).
Thencamenumbersoftheform a b ,where a and b areintegers. Thesearethe rationalnumbers Q.Rationalnumbers
Figure1 Countingnumbersonthenumber line
−4−3−2−11234 0
Figure2 Integersonthenumberline
Theterm rational isderivedfromtheword ratio.Rationalnumbersareratiosofintegers. arealsoplaced proportionallyonthenumberline,asalwayswithlargernumbersto therightandsmallernumberstotheleft.Itiscommontorepresent numbersaspointsonaline,asshowninfigure 3.Rationalnumbers havedecimalexpansionsthateitherterminateorrepeat,suchas
or 4 3 =1.3=1.33333
Irrationalnumbers havedecimalexpansionsthatneitherterminate norrepeat,suchas √2=1.4142 ... and π =3.14159 ... .They alsofindtheirplaceonthenumberline.Thecollectionofallofthese
−4−3−2−11234 0 1 2 7 3 2 1
Figure3 Rationalnumbers(inorange)as pointsonthenumberline
Figure4 Realnumbers(inorange)aspoints onthenumberline
numbersiscalledthe realnumbers R (figure 4).Therealnumbersfill outthenumberline;theycanbeplacedinone-to-onecorrespondence withthepointsontheline.Evenso,staytunedformorenumbersin chapter1!
Inequalities Thestatement a < b meansthenumber a islessthanthenumber b, and a istotheleftof b onthenumberline.Thestatement a > b means thenumber a isgreaterthanthenumber b,and a istotherightof b on thenumberline.
Anyinequalitycanbewrittenintwodifferentways: 4<9 meansthesamethingas 9>4 −4−3−2−11234 0
Figure5 Anumberline.Because 1 istotheleftof 3, 1<3.Multiplyboth numbersby 1 andtheorderreverses: 1> 3
CAUTION:Theword smaller canbeambiguous.Onemightusesmallerassynonymouswith“lessthan,”inwhichcase 3 is smallerthan 1.Onemightusesmalleras synonymouswith“closertozero”(smaller inmagnitude),inwhichcase 1 issmaller than 3
Noticeinfigure 5 thatalthough1istotheleftof3onthenumber line, 1istotherightof 3.Thus,1<3,but 1> 3.Whenmultiplying(ordividing)aninequalitybyanegativenumber,thedirection oftheinequalitymustbereversed.
INEQUALITIES:MULTIPLYINGORDIVIDINGBY NEGATIVES Whenmultiplyingordividingbothsidesofaninequalitybya negativenumber,thedirectionoftheinequalitymustbereversed.
The reciprocal ofanumberis 1 dividedby thatnumber;thereciprocalof 35 is 1 35 .
Thesameistruewhentakingreciprocals.
Although2<7,notice infigure 6 that 1 2 > 1 7 .Thelargerthedenominator,thesmallerthe fraction.
−11234567 1 2 1 7
Figure6 Anumberline.Because 2 istotheleftof 7, 2<7.Takereciprocals ofbothnumbersandtheorderreverses: 1 2 > 1 7
INEQUALITIES:RECIPROCALS Whentakingreciprocalsofbothsidesofaninequality,thedirectionoftheinequalitymustbereversed.
Solvinglinearinequalitiesissimilartosolvinglinearequations.Care mustbetaken,however,tochangethedirectionoftheinequalityunder thecircumstancesjustdescribed.
Example1 Solvetheinequality 4x +2< x 7.
Solution Firstwesubtract x frombothsides:
Thegoalistoisolatethevariable x onone sideoftheequationbyitself. 3x +2< 7.
Nextwesubtract2frombothsides: 3x < 9.
Finally,wedividebothsidesby3:
Becausewearedividingbyapositivenumber,thedirectionoftheinequalitydoesnot change. x < 3.
Thesolutiontotheinequalityis x < 3.
Solutionstoinequalitiesmayalsobepresentedingraphicalform. Theideaistoindicatewhichnumbersonthenumberlinesatisfythe inequality.For x < 3,thevariable x satisfiestheinequalityaslongas x istotheleftof 3(figure 7):
−3
Figure7 Theinequality x < 3,shadedingreen.Theopencircleindicates that 3 isnotincluded
Drawinganopencircleindicatesthepointisnotincluded.An alternateversionthatissometimesusedistodrawaparenthesis instead(figure 8).
Recallthat a ≤ b meansthateither a < b or a = b
Example2 Solvetheinequality 7x +1≤4.
−3 )
Figure8 Theinequality x < 3,shadedin green.Theparenthesisindicatesthat 3 isnot included
3 7 [
Figure10 Theinequality x ≥ 3 7 ,shadedin green.Thebracketindicatesthat 3 7 isincluded
Solution Firstwesubtract1frombothsides: 7x ≤3.
Nextwedividebothsidesby 7,whichrequiresswitchingthedirectionoftheinequality: x ≥ 3 7
Thesolutiontotheinequalityis x ≥ 3 7 .
Becausethevalue x = 3 7 isincludedinthesolutiontoexample 2, whenpresentingthesolutioningraphicalform,thecircleisfilledin (figure 9):
7
Figure9 Theinequality x ≥ 3 7 ,shadedingreen.Thefilledcircleindicates that 3 7 isincluded
Analternateversionofthediagramistouseabracketinsteadofa filledcircle(figure 10).
Intervals Intervalnotation,andthevarioustypesofintervals,aresummarized intable1.Parenthesesindicatetheendpointisnotincluded;brackets indicatetheendpointisincluded.Thesymbols ∞ and −∞ arenot numbers,butmerelyindicatorsthattheintervalhasnoendpointon therightortheleft,respectively.Intervalsthatdonotcontainanyof theirendpointsare openintervals;intervalsthatcontainalloftheirendpointsare closedintervals.Becauseneither ∞ nor −∞ areendpoints, then [a, ∞) isaclosedinterval.Boundedintervalshavetwoendpoints; unboundedintervalsrangeto ∞ or −∞.Thetwonumbersorsymbols intheintervalarealwayswrittenwiththesmallervalueor −∞ onthe leftandthelargervalueor ∞ ontheright.Intable1,thegreenshading onthegraphsindicatesthesolutionset.
Example3 Fortheinequality 3< x ≤5,(a)writetheinequalityin intervalnotationand(b)classifytheinterval(open/closed,bounded/ unbounded).
Table1 Notation,visualization,andclassificationofintervals
inequality interval graph open/closed bounded?
a < x < b (a, b) ab open bounded
a ≤ x ≤ b [a, b] ab closed bounded
a < x ≤ b (a, b] ab neither bounded
a ≤ x < b [a, b) ab neither bounded
a < x (a, ∞) a open unbounded
a ≤ x [a, ∞) a closed unbounded
x < b (−∞, b) b open unbounded
x ≤ b (−∞, b] b closed unbounded
all x ∈ R (−∞, ∞) both unbounded
Solution (a)Because3isnotincluded,weuseaparenthesisfor thatendpoint,andbecause5isincluded,weuseabracketforthat endpoint.Theintervalis (3,5].
(b)Theintervalisneitheropennorclosedbecauseitcontainsone, butnottheother,endpoint.Theintervalisboundedbecauseitdoes notrangeto ∞ orto −∞.
Example4 Graphtheinterval:(a) [4, ∞),(b) ( 5, 3).
Solution (a)Theinterval [4, ∞) includes4,sowedrawafilledcircle at4toindicateitsinclusion.Theshading(green)hasnoboundonthe right.
4
(b)Fortheinterval ( 5, 3)
wedonotincludeeitherendpoint,so wedrawopencirclesat 5andat 3.Theshading(green)isbetween thosetwonumbers.
−5−3
Intervalsarecharacterizedbythepropertythatallnumbersbetweentwooftheinterval’snumbersarealsointheinterval.Ifthereis any“gap”intheset,thenitisnotaninterval.Theset ( 4,0) ∪ (3,5) isnotaninterval;seefigure 11
Boundedopenintervalssuchas ( 5, 3) shareanotationwithpointsinthe xy-plane. Contextisnearlyalwaysenoughtodeterminewhichismeant.
−4035
Figure11 Theset ( 4,0) ∪ (3,5) isnotan intervalbecausethereisa“gap”from 0 to 3
CAUTION:MISTAKETOAVOID
Theheuristic“absolutevaluechanges to +”isthesourceofmanyalgebraicerrorsand shouldbeavoided.Forinstance,if x = 5, then |− x| = |− ( 5)| = |5| =5= x, soforthisvalueof x, |− x|̸= x
“Removingthenegative”doesnotwork forabsolutevaluesofvariableexpressions, because x isnotnecessarilyanegative number.
Absolutevalue Theideaofabsolutevaluecanbevisualizedasthedistancefromthe numbertozeroonthenumberline(figure 12).
−203 |3| |=3 −2| =2
Figure12 Absolutevalueasthedistanceonthenumberlinebetweenthe numberandzero
Becausethenumber3islocated3unitsawayfromzeroonthe numberline, |3| =3.Becausethenumber 2islocated2unitsaway fromzeroonthenumberline, |− 2| =2.
Alternately,wecanthinkoffoldingthenumberlineatthe number0,foldingtheleftsideofthenumberlineontotherightside. Theabsolutevalueofanumberiswhereitislocatedafterthefolding.Theformaldefinitionofabsolutevaluesaysthatweleavepositive numbersalonebut“reflect”or“fold”thenegativenumbersbytaking theirnegatives.
Definition1 ABSOLUTEVALUE Foranyrealnumber a, |a| = a, if a≥0 a, if a<0. Because 2<0,thedefinition(using a = 2)saysthat |−2| = ( 2) =2.
PROPERTIESOFABSOLUTEVALUE Foranyrealnumbers a and b, |a b| = |a|·|b| and a b = |a| |b| (assuming b =0).
CAUTION:MISTAKETOAVOID |a + b|̸= |a| + |b| |a b|̸= |a|−|b|
Thepropertiesofabsolutevaluegiveusruleswecanusetosimplify expressions.Forinstance,
Howcanwesimplify √x2?Manyassumetheansweris x,butthis isnotcorrect,becausethesquarerootoperationalwaysgivesusthe nonnegativenumberwiththesquarethatisinside.Forinstance, √16= 4andnot 4andnot ±4.
Therefore, √42 = √16=4,
whereas
Thesolutionsto x 2 =16 are x = ±√16= ±4,butthesymbol √16 meansonlythe positivevalue, 4
CAUTION:MISTAKETOAVOID
x2 = x ( 4)2 = √16=4(not 4)
Thisillustratesthefollowingfact:
x2 = |x|.
Absolutevalueequations andinequalities Whichnumberssatisfy |x| =3?Thetwonumbers x =3and x = 3 aretheonlysolutionstothisequation.Seefigure 13.
ABSOLUTEVALUEEQUATIONS If a ≥0,then |x| = a ifandonlyif x = ±a.
Example5 Solve x2 =16
Solution Webeginbytakingthesquarerootofbothsidesofthe equationandsimplifying:
x2 = √16
Nextwesolvetheabsolutevalueequation: x = ±4.
SQUAREROOTSOFSQUARES
x2 = |x|
|3| |=3 −3|=3
Figure13 Thetwonumberslocated 3 units fromzero
Thephrase“x = ±a”hasthesamemeaning as“x = a or x = a.”
Rememberthat √x2 = |x|