Beyond chance and credence: a theory of hybrid probabilities 1st edition wayne c. myrvold - The comp

Page 1


BeyondChanceandCredence:ATheoryofHybrid Probabilities1stEditionWayneC.Myrvold

https://ebookmass.com/product/beyond-chance-and-credence-atheory-of-hybrid-probabilities-1st-edition-wayne-c-myrvold/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

The Philosophy of Evolutionary Theory: Concepts, Inferences, and Probabilities 1st Edition Elliott Sober

https://ebookmass.com/product/the-philosophy-of-evolutionary-theoryconcepts-inferences-and-probabilities-1st-edition-elliott-sober/

ebookmass.com

Movements of the Mind: A Theory of Attention, Intention, and Action

Wayne Wu

https://ebookmass.com/product/movements-of-the-mind-a-theory-ofattention-intention-and-action-wayne-wu/

ebookmass.com

Phenomenalism: A Metaphysics of Chance and Experience 1st Edition Michael Pelczar

https://ebookmass.com/product/phenomenalism-a-metaphysics-of-chanceand-experience-1st-edition-michael-pelczar/

ebookmass.com

Getting

Better Michael Rosen

https://ebookmass.com/product/getting-better-michael-rosen/

ebookmass.com

Organometallic Chemistry in Industry - A Practical Approach Colacot Thomas J. (Ed.)

https://ebookmass.com/product/organometallic-chemistry-in-industry-apractical-approach-colacot-thomas-j-ed/

ebookmass.com

Mader's reptile and amphibian medicine and surgery Third Edition Divers

https://ebookmass.com/product/maders-reptile-and-amphibian-medicineand-surgery-third-edition-divers/

ebookmass.com

Winterberries-like 3D network of N-doped porous carbon anchoring on N-doped carbon nanotubes for highly efficient platinum-based catalyst in methanol electrooxidation Tong Wang https://ebookmass.com/product/winterberries-like-3d-network-of-ndoped-porous-carbon-anchoring-on-n-doped-carbon-nanotubes-for-highlyefficient-platinum-based-catalyst-in-methanol-electrooxidation-tongwang/ ebookmass.com

Windows 11 Mastery: From Foundation to Mastery Kameron Hussain & Frahaan Hussain

https://ebookmass.com/product/windows-11-mastery-from-foundation-tomastery-kameron-hussain-frahaan-hussain/

ebookmass.com

How to Make Your Money Work: Decide what you want, plan to get there Eoin Mcgee

https://ebookmass.com/product/how-to-make-your-money-work-decide-whatyou-want-plan-to-get-there-eoin-mcgee/

ebookmass.com

Social Media as a Space for Peace Education: The Pedagogic Potential of Online Networks M. Ayaz Naseem

https://ebookmass.com/product/social-media-as-a-space-for-peaceeducation-the-pedagogic-potential-of-online-networks-m-ayaz-naseem/

ebookmass.com

BeyondChanceandCredence

BeyondChanceand Credence

ATheoryofHybridProbabilities

WAYNEC.MYRVOLD

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©WayneC.Myrvold2021

Themoralrightsoftheauthorhavebeenasserted

FirstEditionpublishedin2021

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2020950770

ISBN978–0–19–886509–4

DOI:10.1093/oso/9780198865094.001.0001

Printedandboundby

CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

5.

6.

5.1

5.3

5.4 On the reasonable credence-set e,, and an analog of the

5.5 Learning about

5.6 Soup from a stone: can the

5.7

6.

6.2

6.3

6.4

6.5

6.6

7.

7.1

7.2

7.3

7.4

7.5

7.6

7.

8.

8.1

8.3

8.4

8.5

8.6

8.7

9.3

9.4

9.5 Dynamical collapse theories: probabilities as

9.6 Everettian interpretations: no probabilities, but a working substitute (perhaps)

9.7 Can classical statistical mechanics stand on its own two feet?

9.8 Conclusion

9.9 Appendix: a brief introduction to the basics of

2.1Likelihoodfunctions

4.4Densityfunctionfortheinvariantdistribution μ

4.5Theeffectoffiveiterationsoftheparabolagadget onvariousinputdistributions

4.6Five-stepbackwardsevoluteofadensityfunctionuniformoverleft halfofthediagonal

4.7Thedifferencebetweenknowledgeofthepastandofthefuture

5.1Poincaré’sillustrationofadensityfunctionoverfinalangle.From Poincaré(1896:128;1912:149)

5.2Resultsofasimulatedgadgetexperiment

5.3Normalizedlikelihoodfunctionsforasimulatedgadgetexperiment117

11.1Probabilitiesofpossiblevaluesfor Fn,for p = 2/3,withnormal approximations

5.1Resultsofsimulatedparabolagadgetexperiment

Acknowledgments

Overthecourseofwritingthisbook,Ihavegiventalksonsomeofthe contentsatvariousplaces,andIamgratefultohavereceivedfeedbackon thoseoccasions.Thebookwasalsoreadindraftforminareadinggroupat theUniversityofWesternOntario.Iexpressmythanksfortheirfeedback tomembersofthatgroup,andtothegraduatestudentsinacoursefor whichitwasusedasatext.Amongthosewhohaveprovidedvaluable commentsondraftsofthebookareDimitriosAthanasiou,MichaelCuffaro,ThomasdeSaegher,LucasDunlap,SonaGhosh,MarieGueguen,Bill Harper,MarcHolman,HaiyuJiang,MollyKao,AdamKoberinski,Joshua Luczak,MackenzieMarcotte,TimMaudlin,VishnyaMaudlin,JohnNorton, FilipposPapagiannopoulos,StathisPsillos,BrianSkyrms,ChrisSmeenk, andMartinZelko.ParticularthanksareduetoDavidWallaceandMarshall Abramsfortheirdetailedcomments.IthankZiliDongforassistancewith copy-editingandtheindex.

Partofthewritingofthisbookwasdonewhiletheauthorwasavisiting scholaratthePittsburghCenterforthePhilosophyofScience.Ithankthe Centerfortheirhospitality,andforfosteringalivelyintellectualatmosphere. Researchforthebookwassponsored,inpart,byGrahamandGaleWright, whogenerouslyfundtheGrahamandGaleWrightDistinguishedScholar AwardattheUniversityofWesternOntario.

Preface

Thisisabookabouttheuseofprobabilityinscience,withanemphasis onitsuseinphysics,and,particularly,instatisticalmechanics.Itsimpetus stemsfromapuzzle.Theapplicationofprobabilisticconceptsinphysicsis ubiquitous(moresothanmightatfirstappear,asIargueinthefirstchapter). Thisraisesthequestionofhowtointerprettheprobabilitiesbeingused. Ithaslongbeenrecognized(andisamplydocumentedbyIanHackingin hisbook TheEmergenceofProbability)thattheword“probability”hasbeen usedintwodistinctsenses.Oneoftheseisanepistemicsense,havingto dowithdegreesofbeliefofagents,suchasourselves,withlessthantotal knowledgeoftheworld.Followingstandardusageinphilosophy,Iwill callepistemicprobabilities credences.Inanothersense,calledbyHacking the aleatory sense,probabilitiesarefeaturesofcertainsortsofphysicalsetups:dicethrows,roulettewheels,andthelike.Weroutinelyraisequestions aboutwhetheracointossisfair,orwhetheraroulettewheelisbiased,and treatthesequestionsasquestionsabouttheobjects,questionsthatcanbe addressedbyexperimentation.Again,followingstandardusage,Iwillcall theseprobabilities chances,or objectivechances. Itwouldbeamistaketothinkofthesetwosensesinwhichtheword “probability”hasbeenusedasrivalinterpretationsofprobability,oneof whichmustbeacceptedtotheexclusionoftheother.Theyaresimplydistinct (albeitintertwined)concepts,andeachhasalegitimateuse.Indeed,much confusioncouldhavebeenpreventediftheword“probability”hadnever beenusedambiguously,and“chance”and“credence”usedinstead. However,thereisapuzzlehere.Formuchofthemodernperiod,itwas takenforgrantedthatthefundamentallawsofphysicsaredeterministic. Eventoday,whenitisacceptedthattheworldisquantum,notclassical,it isfarfromnoncontroversialthatthelessontobedrawnfromtheempirical successofquantumtheoryisindeterminismattheleveloffundamental physics.Onthemoststraightforwardconceptionofwhatanobjectivechance wouldbe,suchchancesareincompatiblewithdeterminism.Itisthisthatled writersonprobabilitytheorysuchasBernoulli(1713),Laplace(1814),and others,todeclarethatprobabilityiswhollyepistemic.Andyetthesesame

writersfall,onoccasion,intotakingitasamatterofphysicalfactwhethera givengameofchanceisfair,andthusthereisatensionintheirwritings.

Oneofthemainthesesofthisbookisthatthefamiliardichotomyof chance and credence isinadequate,andthatthereisaneedforaconceptof probabilitythatmakessenseinadeterministiccontextandwhichcombines epistemicandphysicalconsiderations.Thesehybridprobabilities,whichare neitherwhollyepistemicnorwhollyphysical,Icallepistemicchances.Iargue thattheyfulfilltherolerequiredofprobabilitiesingamesofchanceandin statisticalmechanics.

Inordertodoso,someground-clearingisrequired,asIneedtoexplain whytherearen’tready-madeserviceablenotionsthatfilltheroleforobjective chanceinadeterministiccontext.Oneofthese,connectedwithclassical probabilitytheory,istheideathatdefiningtheprobabilityofaneventisa simplematter:theprobabilityofanevent A isjusttheratioofthenumber ofpossibilitiescompatiblewiththeevent’soccurrencetothenumberof allpossibilities.Theotheristheideathatprobabilitystatementscanbe cashedoutasimplicitreferencestorelativefrequenciesinsomeactual orhypotheticalsequenceofevents.Neitheroftheseattemptsatdefining probabilitiesachievetheirpurpose.Theseapproacheshavebeenextensively criticized,butIdonotpresumethatallofmyreadersarefamiliarwiththese criticisms,and,indeed,expectthatsomereaderswillbegintheirreadingof thebookasproponentsofoneortheotheroftheseviews.Forthatreason, IexplainthereasonswhyIthinkthatneitheroftheseapproachesprovide anadequateconceptionofprobabilityinChapter3,andwhymyreaders should,too.

Oneofmymotivationsforwritingthebookisadissatisfactionwiththe wayprobabilitiesaretreatedinmuchofthephilosophicalliterature.Too muchoftheliteratureinthephilosophyofprobabilityislackinginhistorical perspective,and,asaconsequence,debatesthatwerecarriedoutinthe nineteenthcenturyarerecapitulatedinthetwenty-first.Wherehistorical referenceismade,itisoftenincorrect.Acommonnarrativehasitthat Laplace(1814)naïvelythoughtthatprobabilitiescouldbestraightforwardly definedonthebasisofaPrincipleofIndifference,andthatBertrand(1889) shatteredsomesortoforthodoxywithhis“paradox.”Thetruthisthatthe examplesinvokedatthebeginningofBertrand’s CalculdesProbabilités were meanttoillustrateaby-thenfamiliarpointmadealreadybyLaplace,and thatBertrandwas,infact,echoingLaplace.Ihopetorestoresomehistorical perspectivetocontemporarydiscussions.

Theliteratureonthefoundationsofstatisticalmechanicshasbeenheavily influencedbytheEhrenfests’encyclopediaarticle(1912).Thatarticlehas considerablemerits,buthistoricalaccuracyisnotoneofthem.TheEhrenfestssoughttosecuretheplaceoftheirlatefriendandmentor,Ludwig Boltzmann,asthechiefarchitectofstatisticalmechanics;andBoltzmann’s predecessors,inparticularJamesClerkMaxwell,andBoltzmann’ssuccessor, J.WillardGibbs,whobuiltonandextendedBoltzmann’swork,receive shortshrift.Thenarrativeinthemindsofmanyworkinginthephilosophy ofstatisticalmechanicsisthat,atthetimeBoltzmannpublishedhiscelebrated H-theorem(1872),thoseworkinginthefieldwenowcallstatistical mechanicspresumedthatamonotonicrelaxationtowardsequilibriumcould bederivedfromthelawsofmechanicsalone,andthatthereversibility objectionstemmingfromLoschmidt(1876)cameasaboltfromtheblue. Infact,theargumentfromthereversibilityofunderlyingmechanicallaws totheconclusionthatirreversibilityatthemacroscopiclevelhadtobea matterofprobabilityhadbeenfamiliartotheBritishphysicists,Maxwell, Kelvin,Tait,andRayleighforalmostadecadebeforeBoltzmanncameto thisrealization.AnothereffectoftheEhrenfests’influenceisthenotionthat therearetwoincompatiblerivalapproachestostatisticalmechanics:BoltzmannianandGibbsian.WhatisnowusuallycountedasBoltzmannian(or neo-Boltzmannian)statisticalmechanicsconsistsofextractingonestrand fromthemanytobefoundinBoltzmann’swork.Gibbssawhimself,notas offeringarivalapproachtoBoltzmann’s,butasbuildinguponanotherstrand ofBoltzmann’swork.Oneoftheseminaltextbooksofstatisticalmechanics, thatofR.C.Tolman(1938),weavestogetherconsiderationsdrawnfrom BoltzmannandGibbs,asdomanyofitssuccessors.Inmypresentation,the readerisintroducedtobothaGibbsianandneo-Boltzmannianapproach;my ownviewisthatthesupposedtensionsbetweenthemhavebeenexaggerated.

MychiefmotivationforwritingthebookisthefactthatIfrequentlyfind, indiscussionswithmyownstudentsandwithstudentsthatIencounterat conferencesandworkshops,thatagreatdealofmaterialthatIregardas prerequisitefordoingserious,professional-levelworkonthefoundations ofprobabilityandonthefoundationsofthermodynamicsandstatistical mechanics,isnotmaterialthatonecanpresumeisfamiliartothosewishing toembarkonsuchwork,andisnotreadilyavailable.ThisisabookthatI wishhadexisted,whenIwasagraduatestudentandthenajuniorresearcher, beginningtodelveintosuchmatters.

Thebookismeanttobemoreorlessself-contained,andcanserveas anintroductiontotheissuesdiscussedforthosenotalreadyfamiliarwith

them.Itcanbeused(asIhavedonewithanearlierdraft)asatextina graduatecourseonphilosophicalissuesinprobability,forstudentswithout backgroundinprobabilitytheory.Forthisreason,Ihaveincluded,asan Appendix,abriefintroductiontoprobabilitytheory,andincludealsochaptersintroducingthebasicsofthermodynamicsandstatisticalmechanics. ThesecontainmaterialthatIthinkeveryoneinterestedinthefoundationsof thesesubjectsshouldknow,andwhichisnoteasytogleanfromtheexisting philosophicalliteratureonthermodynamicsandstatisticalmechanics.

Iinvitereaderstothinkofthisbookasachoose-your-own-adventure book.Forthosewhowishtoreadthroughtheworkwithaminimumof mathematics,Ihaverelegatedmosttechnicaldetailstoappendices.But Ihopethatsomereaderswilltakethesepagesasaninvitationtoembark onseriousworkinphilosophyofprobability.Thetrainingofaphilosopher, whenitcomestorelevantbackgroundknowledge,isoftenunsystematic,and weoftenhavetopickupwhatweneedalongtheway.Forgraduatestudents andotherswithoutmuchbackgroundinprobability,Ihaveincludedintroductorymaterial,andIhopethatamongmyreaderswillbethosewhoare inclinedtoworkthroughit.

Noteonsources. Inthisbook,Iquotemanyworksthatwerepublished priortothetwentiethcentury.Thedatesandlocationoffirstpublication areimportantforhistoricalreasons,andforthisreasonIhaveprovided referencestotheoriginalpublications.Formanyofthefiguresquoted, suchasMaxwell,Kelvin,andBoltzmann,therearevolumesofcollected papers,whichmakestheworksmorereadilyaccessible.Forconvenience, Ihaveprovidedreferencetosuchcollections,inadditiontotheoriginal publications.Foranyquotationscontainedinthisbookfromworkswritten inlanguagesotherthanEnglish,Ihave,whereverpossible,lookedatthe originalpublication,andprovidecitationoftheoriginalforthosewhowant tolookatit,aswellasthetranslationfromwhichIamquoting.Incases whereanadequatetranslationwasnotreadilyavailable,thetranslationis myown,andIhaveprovidedtheoriginaltextinafootnote.Iamgratefulto MarieGueguenforassistancewiththeFrenchtranslations.

1

ThePuzzleofPredictability

1.1Introduction

Itisafamiliarfactthatsomethingscanbepredictedwithareasonabledegree ofconfidence;others,lessso.Thedailyrisingandsettingofthesun,the waxingandwaningofthemoon,andthemotionsofthemajorplanetsare familiarexamplesofthepredictable.Inotherdomains,suchasthestock market,themotionofaleafasitfallsfromatreeonablusteryday,orthe vagariesoftheweather,predictionishardertocomeby.

ThequestionIwanttoaskis:Howispredictionpossible,inthosedomains inwhichitis?

Avenerableanswer,andperhapsthefirstthatmightsuggestitselftosome readers,is:becausetherearedeterministiclawsofphysicsthat,togetherwith initialconditions,uniquelydeterminethefuturebehaviourofthings.This mightormightnotbetrue.Butit’sirrelevanttothequestionofwhatmakes predictionpossible.

Eveniftheunderlyinglawsofphysicsaredeterministic,weareneverin possessionofanythingevenremotelylikethesortofspecificationofthestate ofasystemthat,togetherwiththoselaws,sufficestodeterminewhatwewill observeinthefuture.Wenever,infact,takeintoaccountanythingmorethan atinyfractionofthephysicaldegreesoffreedomofanymacroscopicsystem. Instead,weengageinradicaldimensionalreductionofourproblems;we seekrelationsbetweenasmallnumberofmacroscopicvariables,discarding almosteverythingthereistobeknownaboutthesystem.

Itiswellknownthattherearesystemsthatexhibitextremelysensitive dependenceoninitialconditions,andtherehasbeenextensiveliteratureon theproblemsthatthisposesforprediction.Preciselong-termprediction, forsuchsystems,requiresabsurdlyprecisespecificationofinitialconditions. Butthesituationwefindourselvesinismuchworse;weknowvirtuallynothingabouttheprecisestateofmacroscopicsystemstowhichwesuccessfully applyourpredictivetechniques.

Togetasenseofthemagnitudeoftheproblem,considerwhatmightseem tobetheeasiestcase,thatofplanetarymotion.Astrophysicistscompute tablesofpredictedplanetarypositionswithanimpressivedegreeofprecision,millenniainadvance.Thecalculationisanintricateone,becauseit’s agravitationalmany-bodyproblem,whichistackledbyderivingsuccessive approximationstothemotion.Itiscomplicatedbythefactthat,atthelevelof precisionreachedbymodernastronomy,Newton’slawofgravitationisnot sufficient,andthetheoryofgeneralrelativitymustbetakenintoaccount. Butnevermindallthat;supposeyouwanttogetafirstapproximationtothe motionsofasingleplanet,say,Jupiter.Thegravitationalinfluenceofthesun onJupiterisbyfarthestrongestfactoraffectingitsmotion,andso,agood firstapproximationcanbeobtainedasatwo-bodyproblem.

Supposethen,thatyouareposedthefollowingproblem.Youaregiven therelevantlawsofphysics,themasses,currentpositions,andvelocitiesof theSunandJupiter,thevaluesofanyothermacroscopicallyascertainable quantitiesthatyoumightregardasrelevant,andpermissiontoignore everythingintheuniverseotherthanJupiterandtheSun,becauseyouare onlybeingaskedtoprovideafirstapproximationofthefuturebehaviour ofthesystem.Youareforbiddentoinvokeanythingelse.Theonlyassumptionthatyoumaymakeaboutthedetailedmicrostateofthesystemis thatitiscompatiblewiththevaluesofthemacrovariablesthatyouhave beengiven.

Question:Onthisbasis,whatcanyousayaboutthefuturecourseofthe system?

Answer:Virtuallynothing.

Ifyouwereposedaquestionlikethis,youwouldprobablytreatitasagravitationaltwo-bodyproblem.Thisisexactlysolvable,andanapproximation toinitialconditionsyieldsanapproximationtolaterconditions.

But,ifyouaretreatingitasatwo-bodyproblem,youareassumingthat theSunandJupiterwillremain,duringtheintervaloverwhichyouare interested,roughlysphericalbodiessmallinsizecomparedtothedistance betweenthem,andyouwilltreattheproblemasoneoffindingthemotionof thecentersofmassofthesetwospheres.Youareassumingthattheywillnot flyintopieces.Butthisis,bytherulesstipulated,anillicitassumption.The macrostateofthesystemiscompatiblewithawidevarietyofstatesonthe scaleof,say,individualmolecules,and,withinthescopeofthissetofstates aresomethatleadtoawidevarietyofsubsequentbehaviour.Theproblemis thatitisnotatwo-bodyproblem;it’satleastan N-bodyproblem,where

N isthetotalnumberofmoleculesthatcollectivelymakeupJupiterand thesun.

Whatweactuallyknowaboutanymacroscopicsystemdoesn’teven remotelycomeclosetobeingenoughtotightlyconstrainthefuture behaviourofthesystem.ThisiswhatIcallthe puzzleofpredictability.

Thekeytosolvingthepuzzleliesinthephenomenonof statisticalregularities.Ithaslongbeenrecognizedthataggregatesofeventsthatare,individually,unpredictable,cangiverisetoreliableregularities.Thus,forexample, thetotalnumberoftrafficaccidentsinagivenyearinPittsburghmight bemoreorlessconstant,fromyeartoyear,thoughexactlywhenandwhere thenextaccidentwilloccurisnotpredictable.Statisticalregularitiesarise whenweaggregatealargenumberofvariablesthatareeffectivelyrandom andeffectivelyindependent.Counterintuitiveasitmightseem,effective prediction,evenincasesofapparentdeterminism, always involvesthissort ofstatisticalregularity.Thisiswhytheissueofwhethertheunderlyinglaws aredeterministicisirrelevanttothequestionofhowitisthatwecanmake effectivepredictions.Evenifthelawsaredeterministic,whatisrequired fromthemis effectivelyrandom behaviourofmostofthevariablesthatare potentiallyrelevanttoapredictiontask.

Anupshotofthisisthatconsiderationsthatstemfromprobabilitytheory arerequiredforall—yes, all—ofourapplicationsofphysicaltheoryto prediction,andnotonlyincaseswheretheirpresenceisapparentbecause probabilitiesareexplicitlyinvoked.

Now,alittlemoredetailonthesepoints.

1.2Determinismandthepovertyofourknowledge

InapaperpresentedtotheAcadémieRoyaledesSciencesdeParisinFebruary 1773,Laplacewrote,

ThepresentstateofthesystemofNatureisevidentlyaconsequenceofwhat itwasattheprecedingmoment,andifweconceiveofanintelligencethat, foragiveninstant,embracedalltherelationsofthebeingsofthisUniverse, itwillbeabletodetermineforanygiventimeinthepastorthefuturethe respectivepositions,movements,andgenerallythepropertiesofallthose beings.(Laplace1776:§XXV,in OeuvresComplètes,vol.8,p.144)1

1 “L’étatprésentdusystemdelaNatureestévidemmentunesuitedequ’ilétaitaumoment précédent,et,sinousconcevonsuneintelligencequi,pouruninstantdonné,embrassetousles rapportsdesêtresdecetUniverse,ellepourradéterminerpouruntempsquelconqueprisdans

Thiswas,ofcourse,echoed40yearslaterinanoft-quotedpassagefromhis PhilosophicalEssayonProbabilities (Laplace1814:4;1902:4).2

SomehaveattributedtoLaplaceavisionofthefutureprogressofscience inwhichwehumansapproacheverclosertotheconditionofsuchabeing. NothingcouldbefurtherfromLaplace’sintention.Heisexplainingto hisaudiencewhy,inspiteofthepresumeddeterminismofthelawsof nature(takenbyLaplacetobean apriori truth,basedontheprincipleof sufficientreason),thereisneedforanysuchsubjectasprobabilitytheory. ThePerfectPredictorisintroducedasa contrast totheworkingsofthe humanmind.Thoughourpredictivesuccessesinastronomyfurnisha“feebleideaofthisintelligence,”thehumanmind“willalwaysremaininfinitely removedfromit”(Laplace1902:4),andthatiswhyweneedprobability theory.

Thisistruefortworeasons.Thefirstisthattheamountthatweactually knowisalwaysaminusculefractionofthecompletestateoftheworld. Acompletespecificationofthestatewouldrequirespecificationofthestate ofeveryatom,everyelementaryparticle.Thesecondisthat,evenif(per impossibile)wecouldbegiventhiscompletestate,wecouldnotprocessthe information,couldnotdotherequisitecomputation.Tomakeanyheadway, wewouldhavetoselectafewsalientvariables,andapplyaprobabilisticor statisticaltreatmenttotherest.

Ourvastignoranceis,ofcourse,onlyimportantifwhatwedon’tknow aboutispotentiallyrelevanttowhatwewanttopredict.Onepotential solutiontothepuzzleofpredictabilitythatmightsuggestitselfisthat,in ordertomakepredictionsaboutcertainmacrovariables,allweneedasinput isthevaluesofthosemacrovariables.

Takethecaseofplanetaryprediction.Wedon’tknowthedetailsofthe internalarrangementsoftheplanets,but,itmightbeargued,wedon’thaveto. AllweneedtoknowaboutJupiteristhatacertainmassisconcentrated,inan approximatelysphericallysymmetricfashion,withinasphericalregionthat lepasséoudansl’avenirlapositionrespective,lesmouvements,etgénéralementlesaffectations detouscesêtres.”

2 Laplaceisnot,inthispassage,formulatinganovelthesisorsayinganythingthatwouldhave beensurprisingorshockingtohisreaders;rather,heisremindinghisreadersofsomethingthat hepresumestheytakeforgranted.Indeed,markedlysimilarpassagescanbefoundinearlier writingsbyBoscovich,Condorcet,andd’Holbach;seeKožnjak(2015)fordiscussion.

issmallcomparedtointerplanetarydistances,andthatsomethingsimilar canbesaidabouttheSunandotherplanets.

Thisistrue;ifweknowthatthisholdsatthepresenttime,andcanbe expectedtoremaintruefortheforeseeablefuture,thenwehaveallweneed totreatthesolarsystemasan n-bodygravitationalproblem,where n isa relativelysmallnumberofastronomicalbodies.

However,asalreadymentioned,whatweknowaboutthecurrentmacrostateofJupiterisconsistentwithitsflyingapartinshortorder.Toseethis, imaginetwohalf-Jupitersizedblobsofgascolliding,andsettlingdowninto somethinglikethecurrentstateofJupiter.Therelevantphysicallawsare invariantundervelocityreversal,andso,ifthisisapastthatcouldleadto theobservedmacrostateofJupiter,itisalsoapossiblefutureoftheobserved macrostate.

ItmightseemthatsomefundamentallawofphysicsforbidsJupiterfrom spontaneouslydividingintotwohalf-planetsthatflyapartfromeachother. Butwhat?Conservationofenergy?Lettheresultinghalf-planetsbecooler thanJupiterisnow,sothatthedecreaseininternalenergyoffsetstheincrease inkineticenergy.

Thiswouldinvolvenoviolationoftheconservationofenergy,andneed notviolateanyotherconservationlaw,butitwouldviolatetheSecondLaw ofThermodynamics—atleast,asoriginallyconceived(seeChapter6).Thisis akeytosolvingthepuzzleofpredictability.Understandingthebasisforthe lawsofthermodynamicsisrequisiteforunderstandingpredictability,evenin domainswherethermodynamicsisnotexplicitlyevoked.Itwasoneofthe greatinsightsofnineteenth-centuryphysicstorealizethattheSecondLaw ofThermodynamicsrestsonstatisticalregularities.

Statisticalregularitiesarenotthesortofthingthatcanbesubjectsof certainknowledge.Unlikeregularitiesunderwrittenbydeterministiclaws, theyarenotexceptionless,andtheyareatbestthesortofthingonecan regardasverylikelytoobtain.Thepioneersofthesciencethatcameto becalledstatisticalmechanicscametotheconclusionthatphenomenathat wouldcountasviolatingtheSecondLaw,asoriginallyconceived,shouldbe regarded,notasphysicallyimpossible,butonlyashighlyimprobable.Thus, whatweareseekingisnotacriterionforrulingoutofconsiderationthesorts ofmicrostatesthatwouldleadtoJupiter-splittingbehaviour.Whatweare seekingismoresubtle:somewayofregardingitasunlikelythatamicrostate ofthatsortwillberealized.Andthismeansmakingsenseofprobabilistic assertions,eveninthecontextofdeterministicphysics.

1.3Statisticalregularitiesandthelawoflargenumbers

Today,statisticsisabranchofmathematics,closelyconnectedwith probabilitytheory.Itwasnotalwaysso.Theoriginalmeaningoftheword hadtodowithcollectionandpresentationinasystematicwayofdemographicdata.Here’showthesubjectwascharacterizedintheinauguralissue ofthe JournaloftheStatisticalSocietyofLondon,publishedinMayof1838.

ItiswithinthelastfewyearsonlythattheScienceofStatisticshasbeenatall activelypursuedinthiscountry;anditmaynot,evennow,beunnecessary toexplaintogeneralreadersitsobjects,andtodefineitsprovince.Theword StatisticsisofGermanorigin,andisderivedfromthewordStaat,signifying thesameasourEnglishword State,orabodyofmenexistinginasocial union.Statistics,therefore,maybesaid,inthewordsoftheProspectusof thisSociety,tobetheascertainingandbringingtogetherofthose“facts whicharecalculatedtoillustratetheconditionandprospectsofsociety” andtheobjectofStatisticalScienceistoconsidertheresultswhichthey produce,withtheviewtodeterminethoseprinciplesuponwhichthewellbeingofsocietydepends.

TheScienceofStatisticsdiffersfromPoliticalEconomy,because, althoughithasthesameendinview,itdoesnotdiscusscauses,norreason uponprobableeffects;itseeksonlytocollect,arrange,andcompare,that classoffactswhichalonecanformthebasisofcorrectconclusionswith respecttosocialandpoliticalgovernment.

(StatisticalSocietyofLondon1838:1)

Nearly50yearslater,inthevolumecelebratingthejubileeofthesociety,its president,RawsonW.Rawson,characterizedthescienceas

thesciencewhichtreatsofthestructureof“humansociety,” i.e.,ofsociety inallitsconstituents,howeverminute,andinallitsrelations,however complex;embracingalikethehighestphenomenaofeducation,crime,and commerce,andtheso-called“statistics”ofpin-makingandLondondust bins.(Rawson1885:8)

Bythattimethemathematicalmethodsthatwenowthinkofasthe provinceofthescienceofstatisticshadbeguntomaketheirwayintothe profession,thoughtheywerenotyetdominant.WeseethisintheJubilee volume,whichcontainsapaperbyF.Y.Edgeworththatintroduceshis

beyondchanceandcredence7

audiencetosuchtopicsasthenormaldistributionandsignificancetests,3 totheperplexityofsomemembersoftheaudience(Galton1885:266).

Systematiccollectionofstatisticsburgeonedinthefirsthalfofthe nineteenthcentury,givingriseto(inHacking’swords)an“avalancheof printednumbers”(Hacking1990:3)Withthisavalancheofnumberscame anincreasedawarenessofstatisticalregularities,thatis,stablefrequencies, inlargepopulations,oftheoccurrenceofindividuallyunpredictableevents. Theseextended,notonlytosuchthingsasbirthsanddeaths,butevento matterssuchastheoccurrencesofviolentcrimes.AsQueteletdramatically putit,⁴

Itisabudgetthatwepaywithfrighteningregularity,thatwhichwepay totheprisons,laborcamps,andscaffolds…everyyearthenumbershave confirmedmypredictions,tothepointthat,Icouldhavesaidwithmore exactitude:itisatributethatmanacquitswithgreaterregularitythanthat whichheowestonatureortothetreasuryoftheState,thathepaystocrime!

(Quetelet1835:9)

InEngland,oneconduitofthissortofthinkingwasThomasHenryBuckle, describedbyTheodorePorteras“possiblythemostenthusiasticandbeyond doubtthemostinfluentialpopularizerofQuetelet’sideasonstatistical regularity”(Porter1986:65).

Alsointhenineteenthcenturycameanincreasedawarenessthat,paradoxicalasitmightseem,wecanseetheseregularitiesasarising,notinspite ofchance,but becauseof chance.ThebasicideaisfoundalreadyinJacob Bernoulli’s Arsconjectandi (1713),andhastodowithwhatPoisson(1835; 1837)namedthe lawoflargenumbers.

Thingsofanynaturearesubjecttoauniversallawthatcanbecalledthelaw oflargenumbers.Itconsistsinthefactthat,ifweobserveveryconsiderable numbersofeventsofthesamenature,dependingonconstantcausesand causesthatvaryirregularly,sometimesinonedirectionandsometimesin theother,withouttheirvariationbeingprogressiveinanygivendirection,

3 Yes,thoseexistedbeforeFisherwasborn!

⁴ “Ilestunbudgetqu’onpaieavecunerégularitéeffrayante,c’estceluidesprisons,desbagnes etdeséchafauds;…et,chaqueannée,lesnombressontvenusconfirmermesprévisions,àtel point,quej’auraispudire,peut-êtreavecplusd’exactitude:Ilestuntributquel’hommeacquitte avecplusderégularitéqueceluiqu’ildoitàlanatureouautrésordel’État,c’estceluiqu’ilpaie aucrime!”

wefindratiosbetweenthesenumbersthatareverynearlyconstant.For eachkindofthings,theseratioshaveaspecialvaluefromwhichtheywill deviatelessandless,astheseriesofobservedeventsincreasesfurther,and whichtheywouldreachexactlyifitwerepossibletoextendtheseriesto infinity.(Poisson1837:7)⁵

Weobservestablerelativefrequenciesofeventsinacertainclass,not becausethereisaProvidencewatchingoverthesequence,ensuringthat thingsbalanceout,butbecausethereisn’t.Itistheresultofaggregationof independentchanceeventsthatleadstothesestablefrequencies.

Thebasicideacanbeillustratedbyacointoss.Supposeacoinistossed n times,andthattheprobabilityofheadsonanygiventossis p (forafaircoin, p=1/2),andsupposethatthesetossesareprobabilisticallyindependentof eachother;theprobabilityof Heads onanygiventossis p,regardlessofthe resultsoftheothertosses.⁶Nowconsidertherelativefrequencyof Heads, thatis,thefraction,outofallthetosses,ofthosethatland Heads.This won’t,typically,beexactlyequalto p.Butforalargenumberoftosses,it willprobablybecloseto p,andtheprobabilitythattherelativefrequency ismorethanagivendistancefrom p getssmallerasthenumber n oftosses increases.SeeAppendixforfurtherdiscussion.

1.4Theimportationofstatisticsintophysics

Thisistheintellectualbackgroundagainstwhichseriousworkonthekinetic theoryofgasesbegan,inthemid-nineteenthcentury.Statisticalregularities wereafamiliarphenomenoninthesocialsciences,andtherewasrecognition thattheexplanationfortheseregularitieswastobebasedonprobabilistic considerations.

⁵ “Leschosesdetoutenaturesontsoumisesàuneloiuniversellequ’onpeutappelerlalois desgrandsnombres.Elleconsisteenceque,sil’onobservedesnombrestrèsconsidérables d’événementsd’unemêmenature,dépendantsdecausesconstantesetdecausesquivarient irrégulièrement,tantôtdansunsens,tantôtdansl’autre,c’est-à-diresansqueleurvariationsoit progressivedansaucunsensdéterminé,ontrouvera,entrecesnombres,desrapportsàtrèspeu prèsconstants.Pourchaquenaturedechoses,cesrapportsaurontunevaleurspécialedontils s’écarterontdemoinsenmoins,àmesurequelasériedesévénementsobservésaugmentera davantage,etqu’ilsatteindraientrigoureusements’ilétaitpossibledeprolongercettesérieà l’infini.”

ThisdiffersfromthecorrespondingpassageinPoisson(1835)onlybytheinsertionofthe phrase“decausesconstantes”inthesecondsentence.

⁶ AsequenceofeventsofthissortisreferredtoasequenceofBernoullitrials.

Thekinetictheoryofgasespositsthatagasconsistsofalargenumber ofmoleculesmovinginahaphazardfashion.Thistheory,pioneeredby Clausius(thoughtherewereimportantprecursors,includingDaniel Bernoulli,Herapath,Waterston,Joule,andKrönig),wasdeveloped,atthe handsofMaxwell,Boltzmann,andGibbs,intothesciencethatwe,following Gibbs’coinage,nowcallstatisticalmechanics,andwhosescopehasbeen extendedwellbeyondtreatmentofgases(seeBrush1976forsomeofthe earlyhistory).

Poissonhimself,whogavethelawoflargenumbersitsname,cites moleculartheoryasanapplication.Inabodycomposedofdiscrete moleculesseparatedbyemptyspace,theintermoleculardistancesmay varywidely.Nonetheless,forsufficientlylargevolumes,equalvolumeswill containroughlyequalnumbersofmolecules(Poisson1835:481;1837:10).

Krönig(1856)alsoarguesfororderfromaggregateddisorder,inaccordance withthelawoflargenumbers.

Incomparisonwiththegas-atomseventhesmoothestwallistoberegarded asveryuneven,andthepathofeachgas-atommustthereforebeonethatis soirregularastoescapecalculation.Accordingtothelawsoftheprobability calculusonemayassume,however,inplaceofthiscompleteirregularity,a completeregularity.(Krönig1856:316)⁷

ItwasJamesClerkMaxwell,however,whomadetheuseofstatisticalmethodsacentralpartofkinetictheory.Recognizingthattheeffectofcollisions betweenmoleculeswouldrenderthedetailsoftheirmotionseffectively unpredictable,headoptedthestrategyofasking,notforthedetailedstate ofthegas,butforastatisticalsummaryofitspropertiescomparabletothe tablescompiledbythestatisticians.

Icarefullyabstainfromaskingthemoleculeswhichenterwheretheylast startedfrom.Ionlycountthemandregistertheirmeanvelocities,avoiding allpersonalenquirieswhichwouldonlygetmeintotrouble.

(ReportonapaperbyOsborneReynoldsontheflow ofrarifiedgases,March28,1879,inHarman2002:776, andGarberetal.1995:422)

⁷ “DenGasatomengegenüberistauchdieebensteWandalssehrhöckerigzubetrachten, unddieBahnjedesGasatomsmussdeshalbeinesounregelmässigeseyn,dasssiesichder Berechnungentzicht.NachdenGesetzenderWahrscheinlichkeitsrechnungwirdmanjedoch stattdieservollkommenenUnregelmässigkeiteinevollkommeneRegelmässigkeitannehmen dürfen.”

Turn static files into dynamic content formats.

Create a flipbook