An introduction to quantum optics and quantum fluctuations first edition. edition milonni - The late

Page 1


https://ebookmass.com/product/an-introduction-to-quantumoptics-and-quantum-fluctuations-first-edition-edition-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Introduction to Quantum Field Theory with Applications to Quantum Gravity 1st Edition Iosif L. Buchbinder

https://ebookmass.com/product/introduction-to-quantum-field-theorywith-applications-to-quantum-gravity-1st-edition-iosif-l-buchbinder/

ebookmass.com

Categories for Quantum Theory: An Introduction Chris Heunen

https://ebookmass.com/product/categories-for-quantum-theory-anintroduction-chris-heunen/

ebookmass.com

Introduction to Quantum Mechanics John Dirk Walecka

https://ebookmass.com/product/introduction-to-quantum-mechanics-johndirk-walecka/

ebookmass.com

Angels and Anchoritic Culture in Late Medieval England

https://ebookmass.com/product/angels-and-anchoritic-culture-in-latemedieval-england-joshua-s-easterling/

ebookmass.com

eTextbook 978-0393265293 Everyone’s an Author with Readings (Second Edition)

https://ebookmass.com/product/etextbook-978-0393265293-everyones-anauthor-with-readings-second-edition/

ebookmass.com

Boomer (Cerberus MC Book 25) Marie James

https://ebookmass.com/product/boomer-cerberus-mc-book-25-marie-james/

ebookmass.com

Sturdevant's Art & Science of Operative Dentistry: Second South Asia Edition V. Gopikrishna

https://ebookmass.com/product/sturdevants-art-science-of-operativedentistry-second-south-asia-edition-v-gopikrishna/

ebookmass.com

5 Steps to a 5: AP English Language and Composition 2024 Barbara L. Murphy

https://ebookmass.com/product/5-steps-to-a-5-ap-english-language-andcomposition-2024-barbara-l-murphy/

ebookmass.com

Control of Power Electronic Converters with Microgrid Applications Arindam Ghosh

https://ebookmass.com/product/control-of-power-electronic-converterswith-microgrid-applications-arindam-ghosh/

ebookmass.com

Tame

https://ebookmass.com/product/tame-my-life-nasty-bastards-mcbook-2-hayley-faiman/

ebookmass.com

ANINTRODUCTIONTOQUANTUMOPTICSAND QUANTUMFLUCTUATIONS

AnIntroductiontoQuantumOpticsand QuantumFluctuations

LosAlamosNationalLaboratoryandUniversityofRochester

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

© PeterW.Milonni2019

Themoralrightsoftheauthorhavebeenasserted

FirstEditionpublishedin2019

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2018955000

ISBN978–0–19–921561–4

DOI:10.1093/oso/9780199215614.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

and Tothememoryofmymother-in-law,Xiu-LanFeng

Tomymother,AntoinetteMarieMilonni

Preface

The quantum theory of light and its fluctuations are applied in areas as diverse as theconceptualfoundationsofquantumtheory,nanotechnology,communications,and gravitationalwavedetection.Theprimarypurposeofthisbookistointroducesomeof themostbasictheoryforscientistswhohavestudiedquantummechanicsandclassical electrodynamicsatagraduateoradvancedundergraduatelevel. Perhapsitmightalso offer some different perspectives and some material that elsewhere.

are not presented in much detail

Anybookpurportingtobeaseriousintroductiontoquantumoptics andfluctuationsshouldincludefieldquantizationandsomeofitsconsequences. Itisnotsoeasyto decidewhichotheraspectsofthisbroadfieldaremostaptorinstructive.Ihaveforthe mostpartwrittenaboutmattersoffundamentalandpresumably long-lastingsignificance.Theseincludespontaneousemissionanditsroleasasourceofquantumnoise; fieldfluctuationsandfluctuation-inducedforces;fluctuation–dissipationrelations;and somedistinctlyquantumaspectsoflight.Ihavetriedtofocusontheessentialphysics, andincalculationshavefavoredtheHeisenbergpicture,asitoften suggestsinterpretationsalongclassicallyfamiliarlines.Somehistoricalnotesthatmight beofinterest tosomereadersareincluded;theseandotherdigressionsappear insmalltype.Also includedareexercisesforreaderswishingtodelvefurtherintosomeofthematerial. IamgratefultomylongtimefriendsPaulR.Berman,RichardJ.Cook,JosephH. Eberly,JamesD.Louck,andG.JordanMaclayfordiscussionsover manyyearsabout muchofthematerialinthisbook.Jordanreadmostofthebookinits nearlyfinalversionandmadeinsightfulcommentsandsuggestions.Thanksalsogo toS¨onkeAdlung andHarrietKonishiofOxfordUniversityPressfortheirpatienceandencouragement.

2.5Two-StateAtoms

2.6PulsedExcitationandRabiOscillations105

2.7TransitionRatesandtheGoldenRule107

2.8BlackbodyRadiationandFluctuations112

3.3FieldQuantization:EnergyandMomentum135

3.4QuantizedFieldsinDielectricMedia141

3.5PhotonsandInterference

3.6QuantumStatesoftheFieldandTheirStatisticalProperties147

3.7TheDensityOperator

3.8Coherent-StateRepresentationoftheDensityOperator175

3.9CorrelationFunctions

3.10FieldCommutatorsandUncertaintyRelations182

3.11Complementarity:WaveandParticleDescriptionsofLight190

3.12MoreonUncertaintyRelations 197

4InteractionHamiltonianandSpontaneousEmission

4.1Atom–FieldHamiltonian:WhyMinimalCoupling?205

4.2ElectricDipoleHamiltonian 211

4.3TheFieldofanAtom

4.4SpontaneousEmission 222

4.5RadiationReactionandVacuum-FieldFluctuations240

4.6Fluctuations,Dissipation,andCommutators250

4.7SpontaneousEmissionandSemiclassicalTheory253

4.8MultistateAtoms 255

5AtomsandLight:QuantumTheory

5.1OpticalBlochEquationsforExpectationValues270

5.2AbsorptionandStimulatedEmissionasInterferenceEffects271

5.3TheJaynes–CummingsModel 274

5.4CollapsesandRevivals

5.5DressedStates

5.6ResonanceFluorescence

5.7PhotonAnti-BunchinginResonanceFluorescence297

5.8PolarizationCorrelationsofPhotonsfromanAtomicCascade301

5.9Entanglement

6Fluctuations,Dissipation,andNoise

6.1BrownianMotionandEinstein’sRelations325

6.2TheFokker–PlanckEquation

6.3TheLangevinApproach

6.4FourierRepresentation,Stationarity,andPowerSpectrum337

6.5TheQuantumLangevinEquation 341

6.6TheFluctuation–DissipationTheorem351

6.7TheEnergyandFreeEnergyofanOscillatorinaHeatBath366

6.8RadiationReactionRevisited 371

6.9SpontaneousEmissionNoise:TheLaserLinewidth378

6.10AmplificationandAttenuation:TheNoiseFigure391

6.11PhotonStatisticsofAmplificationandAttenuation395

6.12AmplifiedSpontaneousEmission 398

6.13TheBeamSplitter

6.14HomodyneDetection 406

7DipoleInteractionsandFluctuation-InducedForces

7.1VanderWaalsInteractions 409

7.2VanderWaalsInteractioninDielectricMedia423 x

7.3TheCasimirForce 425

7.4Zero-PointEnergyandFluctuations438

7.5TheLifshitzTheory

7.6QuantizedFieldsinDissipativeDielectricMedia459

7.7GreenFunctionsandMany-BodyTheoryofDispersionForces472

7.8DoCasimirForcesImplytheRealityofZero-PointEnergy?480

7.9TheDipole–DipoleResonanceInteraction482

7.10F¨orsterResonanceEnergyTransfer497

7.11SpontaneousEmissionnearReflectors502

7.12SpontaneousEmissioninDielectricMedia509

A.RetardedElectricFieldintheCoulombGauge513

B.TransverseandLongitudinalDeltaFunctions514

C.Photodetection,NormalOrdering,andCausality516 Bibliography

ElementsofClassical Electrodynamics

Thischapterisabriefrefresherinsomeaspectsof(mostly)classicalelectromagnetic theory.Itismainlybackgroundandaccompanimentfortherestof thebook,witha fewsmallconceptualpointsnotalwaysfoundinstandardtreatises.

1.1ElectricandMagneticFields

Maxwell’sequationsfortheelectricfield E andthemagneticinductionfield B are:

where ρ istheelectricchargedensity, J istheelectriccurrentdensity,and c =1/√ǫ0µ0 isthespeedoflightinvacuum.Thefields E and B aredefinedsuchthattheforceon apointcharge q movingwithvelocity v is F = q(E + v × B). (1.1.5)

Newton’ssecondlaw(F = ma)describesthe(non-relativistic)motionofacharge q ofmass m inthe E and B fields.

Equation(1.1.1)isGauss’slaw:thefluxof E throughanyclosedsurface S is proportionaltothenetcharge Q inthevolume V enclosedby S.Equation(1.1.2) impliesthereisnomagneticchargeanalogousto Q.Equation(1.1.3)isFaraday’slaw ofinduction:thelineintegraloftheelectricfieldaroundanyclosedcurve C—the electromotiveforce(emf)inawireloop,forexample,orjustaloopin freespace—is minustherateofchangewithtimeofthemagneticfluxthroughtheloop;theminus signenforcesLenz’slaw,the(experimental)factthattheemfinducedinacoilwhen apoleofamagnetispushedintoitproducesacurrentactingtorepelthemagnet.

AnIntroductiontoQuantumOpticsandQuantumFluctuations.PeterW.Milonni. © PeterW.Milonni2019.Publishedin2019byOxfordUniversityPress. DOI:10.1093/oso/9780199215614.001.0001

ElementsofClassicalElectrodynamics

Equation(1.1.4)relatestheintegralof B aroundaloop C tothecurrent I in C and thefluxof E through C;thefirsttermexpressesOersted’slaw(anelectriccurrent candeflectacompassneedle),whilethesecondtermcorresponds tothe displacement current thatMaxwell,relyingonmechanicalanalogies,addedtothecurrent density J. Withthisadditionalterm(1.1.1)and(1.1.4),togetherwiththeidentity ∇·(∇×B)=0, implythecontinuityequation

(1.1.6) whichsays,inparticular,thatelectricchargeisconserved.(Theadditionaltermalso impliedwaveequationsfortheelectricandmagneticfieldsandthereforethepossibility ofnearlyinstantaneouscommunicationbetweenanytwopointsonEarth!)Maxwell’s equationsexpressallthelawsofelectromagnetismdiscoveredexperimentallybythe pioneers(Amp`ere,Cavendish,Coulomb,Faraday,Lenz,Oersted,etc.)inawonderfully compactform.

Ifthechargedensity ρ doesnotchangewithtime,itfollowsthat ∇· J =0and, fromMaxwell’sequations,thattheelectricandmagneticfieldsdonot changewith timeandareuncoupled:

AccordingtoAmp`ere’slaw(∇× B = µ0J),themagneticfieldproducedbyasteady current I inastraightwirehasthemagnitude

atadistance r fromthewireandpointsindirectionsspecifiedbytheright-handrule 1 Itthenfollowsfrom(1.1.5)thatthe(attractive)force f perunitlengthbetweentwo long,parallelwiresseparatedbyadistance r andcarryingcurrents I and I′ is

Untilrecentlythiswasusedtodefinetheampere(A)asthecurrent I = I′ intwolong parallelwiresthatresultsinaforceof2 × 10 7 N/mwhenthewiresareseparatedby 1m.Thisdefinitionoftheampereimpliedthedefinition µ0 =4π × 10 7 Wb/A m, theweber(Wb)beingtheunitofmagneticflux.Withthisdefinitionoftheampere,

1 ThefactthatawirecarryinganelectriccurrentgenerateswhatFaradaywouldlateridentifyas amagneticfieldwasdiscoveredbyOersted.Whilelecturingtostudentsinthespringof1820,Oersted noticedthatwhenthecircuitofa“voltaicpile”wasclosed, therewasadeflectionoftheneedleof amagneticcompassthathappenedtobenearby.Amp`ere,atthetimeamathematicsprofessorin Paris,performedandanalyzedfurtherexperimentsonthemagneticeffectsofelectriccurrents.

thecoulomb(C)wasdefinedasthechargetransportedin1sbyasteadycurrentof1 A.Then,intheCoulomblaw,

fortheforceonapointcharge q2 duetoapointcharge q1,with r12 thevectorpointing from q1 to q2, ǫ0 isinferredfromthe defined valuesof µ0 and c: ǫ0 =8.854 × 10 12 C2/N·m2,or1/4πǫ0 =8.9874 × 109 N·m2/C2 .

IntherevisedInternationalSystemofUnits(SI),theampereisdefined,basedon afixedvaluefortheelectroncharge,asthecurrentcorrespondingto1/(1 602176634 × 10 19)electronspersecond.Thefree-spacepermittivity ǫ0 andpermeability µ0 inthe revisedsystemareexperimentallydeterminedratherthanexactly definedquantities; therelation ǫ0µ0 =1/c2,with c definedas299792458m/s,remainsexact.

Equation(1.1.11)impliesthattheCoulombinteractionenergyoftwoequalcharges q separatedbyadistance r is

)=

Wecanusethisformulatomakeroughestimatesofbindingenergies. Consider,for example,theH+ 2 ion.Thetotalenergyis Etot = Enn + Een + Ekin,where Enn isthe proton–protonCoulombenergy, Een istheCoulombinteractionenergyoftheelectron withthetwoprotons,and Ekin isthekineticenergy.Accordingtothevirialtheorem ofclassicalmechanics, Etot = Ekin,implying

Enn = e2/(4πǫ0r),where e =1.602 × 10 19 Cand r ∼ = 0.106nmistheinternuclear separation.Aroughestimateof Een isobtainedbyassumingthattheelectronsitsat themidpointbetweenthetwoprotons:

Then,

Sincethebinding(ionization)energyofthehydrogenatomis13.6eV, thebinding energyofH+ 2 ,definedasthebindingenergybetweenahydrogenatomandaproton,is estimatedtobe(20.4-13.6)eV=6.8eV.Quantum-mechanicalcalculationsyield2.7 eVforthisbindingenergy.Chemicalbindingenergiesontheorderof afewelectron voltsaretypical.

ElementsofClassicalElectrodynamics

ConsiderasanotherexampletheenergyreleasedinthefissionofaU235 nucleus. Sincethereare92protons,theCoulombinteractionenergyofthe protonsis

where R isthenuclearradius.Ifthenucleusissplitintwo,thevolumedecreases beafactorof2,andtheradiusthereforedecreasesto(1/2)1/3R,sincethevolumeis proportionaltotheradiuscubed.ThesumoftheCoulombinteractionenergiesofthe daughternucleiistherefore

Theenergyreleasedinfissionis Uf = U1 U2 =0.37U1.Taking R =10 14 mforthe nuclearradius,weobtain Uf =4.8 × 108 eV=480MeV,comparedwiththeactual valueofabout170MeVpernucleus.Thusweobtainthecorrectorderofmagnitude withonlyelectrostaticinteractions,withoutaccountingforthestrongforcebetween nucleonsandwithouthavingtoknowthat E = mc2 2 Thephysicaloriginoftheenergy releasedinthissimplemodelistheCoulombinteractionofchargedparticles,justasin achemicalcombustionreaction.Buttheenergyreleasedinchemicalreactionstypically amountstojustafewelectronvoltsperatom;theenormouslylargerenergyreleased pernucleusinthefissionofU235 isduetothesmallsizeofthenucleuscomparedwith anatomandtothelargenumberofcharges(protons)involved.

1.2Earnshaw’sTheorem

Electrostaticsisbasedon(1.1.7).Weintroduceascalarpotential φ(r)suchthat E(r)= −∇φ(r),sothat ∇× E =0issatisfiedidentically.Then, ∇· E = ρ/ǫ0 implies thePoissonequation

ortheLaplaceequation

inaregionfreeofcharges.Thereaderhasprobablyenjoyedsolvingtheseequationsin homeworkproblemsforvarioussymmetricalconfigurationsofchargedistributionsand conductorssubjecttoboundaryconditions.Here,wewillrecallonlyoneimplication oftheelectrostaticMaxwellequations, Earnshaw’stheorem:achargedparticlecannot beheldatapointofstableequilibriumbyanyelectrostaticfield.Thisfollowssimply fromGauss’slaw(seeFigure1.1).Thetheoremiseasilygeneralizedto anynumberof charges:noarrangementofpositiveandnegativechargesinfree spacecanbeinstable equilibriumunderelectrostaticforcesalone.

2 “SomehowthepopularnotiontookholdlongagothatEinstein’stheoryofrelativity,inparticular hisfamousequation E = mc2,playssomeessentialroleinthetheoryoffission...butrelativity isnotrequiredindiscussingfission.”—R.Serber, TheLosAlamosPrimer,UniversityofCalifornia Press,Berkeley,1992,p.7.

Fig.1.1 Apointinsidesomeimaginedclosedsurfaceinfreespace.Forthatpointtobeone ofstableequilibriumforapositivepointcharge,forexample,theelectricfieldmustpoint everywheretowardit,whichwouldimplyanegativefluxofelectricfieldthroughthesurface. ThiswouldviolateGauss’slaw,because ∇· E =0infreespace.

AmoreformalproofofEarnshaw’stheoremstartsfromtheforce

onapointcharge q,or,equivalently,thepotentialenergy U (r)= qφ(r); ∇· E =0in freespaceimpliesLaplace’sequation,

whichmeansthatthepotentialenergyhasnolocalmaximumorminimuminside thesurfaceofFigure1.1;alocalmaximumorminimumwouldrequirethatallthree secondderivativesinLaplace’sequationhavethesamesign,whichwouldcontradict theequation.Itisonlypossibleatanypointtohaveamaximumalongonedirection andaminimumalonganother(saddlepoints).Inparticular,nocombinationofforces involving1/r potentialenergies,suchas,forexample,electrostaticplusgravitational interactions,canresultinpointsofstableequilibrium,sincethesumoftheLaplacians overallthepotentialsiszero.

TheReverendSamuelEarnshawpresentedhistheoremin1842inthecontextofthe “luminiferousether”andelasticitytheory.Heshowedthat forcesvaryingastheinversesquare ofthedistancebetweenparticlescouldnotproduceastable equilibrium,andconcludedthat theethermustbeheldtogetherbynon-inverse-squareforces.Maxwellstatedthetheorem as“achargedbodyplacedinafieldofelectricforcecannotbe instableequilibrium,”and proveditforelectrostatics.3

Earnshaw’stheoreminelectrostaticsonlysaysthatstable equilibriumcannotoccurwith electrostaticforces alone.Ifotherforcesacttoholdnegativechargesinplace,apositive chargecan,ofcourse,bekeptinstableequilibriumbyasuitabledistributionofthenegative charges.Similarly,achargecanbeinstableequilibriumin electricfieldsthatvaryintime,or inadielectricmedium(heldtogetherbynon-electrostatic forces!)inwhichanydisplacement ofthechargeresultsinarestoringforceactingbackonit,asoccursforachargeatthecenter ofadielectricspherewithpermittivity ǫ < ǫ0 4

Thingsarealittlemorecomplicatedinmagnetostatics.Therearenomagneticmonopoles, andthepotentialenergyofinterestis U(r)= m B foramagneticdipole m inamagnetic field B.Forinducedmagneticdipoles, m = αmB,where αm > 0foraparamagneticmaterial

3 J.C.Maxwell, TreatiseonElectricityandMagnetism,Volume1,DoverPublications,NewYork, 1954,p.174.

4 See,forinstance,D.F.V.James,P.W.Milonni,andH.Fearn, Phys.Rev.Lett. 75,3194(1995).

ElementsofClassicalElectrodynamics

(thedipoletendstoalignwiththe B field), αm < 0foradiamagneticmaterial(thedipole tendsto“anti-align”withthefield),thepotentialenergyis

and ∇2U = (1/2)αm ∇2B2.Fortheretobeapointofstableequilibriumthefluxoftheforce F throughanysurfacesurroundingthepointinfreespacemust benegative,which,fromthe divergencetheorem,requiresthat ∇· F = −∇2U< 0,or αm∇2B2 < 0atthatpoint.Nowin freespace ∇× B =0,and,consequently, ∇× (∇× B)= ∇(∇· B) −∇2B =0,so ∇2B =0 and

Therefore,wecannothave αm∇2B2 < 0intheparamagneticcase,thatis,aparamagnetic particlecannotbeheldinstableequilibriuminamagnetostaticfield.Butitispossiblefora diamagneticparticletobeinstableequilibriuminamagnetostaticfield:thisissimplybecause B2,unlikeanyofthethreecomponentsof B itself,does not satisfyLaplace’sequationand can havealocalminimum.Ordinarydiamagneticmaterials(wood,water,proteins,etc.)areonly veryweaklydiamagnetic,butlevitationispossibleinsufficientlystrongmagneticfields.The mostspectacularpracticalapplicationatpresentofmagneticlevitation—“maglev”trains—is basedonthelevitationofsuperconductors(αm →−∞)inmagneticfields.

1.3GaugesandtheRelativityofFields

Theelectricandmagneticfieldsofinterestinopticalphysicsarefar fromstaticand must,ofcourse,bedescribedbythecoupled,time-dependentMaxwellequations.In thissection,webrieflyreviewsomegaugeandLorentztransformationpropertiesimpliedbytheseequations.

Weintroduceavectorpotential A suchthat B = ∇× A,consistentwith ∇· B =0. From(1.1.3),itfollowsthatwecanwrite E = −∇φ ∂A/∂t,and,from(1.1.4)and theidentity ∇× (∇× A)= ∇(∇· A) −∇2A,

Intermsof φ and A,(1.1.1)becomes

2φ + ∂ ∂t (∇· A)= ρ/ǫ0. (1.3.2)

Theselasttwoequationsforthepotentials φ and A areequivalenttotheMaxwell equations(1.1.3)and(1.1.1),andthedefinitionsof φ and A ensurethattheremaining twoMaxwellequationsaresatisfied.But φ and A arenotuniquelyspecifiedby B = ∇× A and E = −∇φ ∂A/∂t:wecansatisfyMaxwell’sequationswithdifferent potentials A′ and φ′ obtainedfromthe gaugetransformations A = A′ + ∇χ,and φ = φ′ ∂χ/∂t with B = ∇× A = ∇× A′,and E = −∇φ ∂A/∂t = −∇φ′ ∂A′/∂t 5

5 Theword“gauge”inthiscontextwasintroducedbyHermannWeylin1929.

1.3.1LorentzGauge

Wecan,forexample,choosetheLorentzgaugeinwhichthescalarandvectorpotentials arechosensuchthatweobtainthefollowingequation:6

Then,from(1.3.1)and(1.3.2),

TheadvantageoftheLorentzgauge,asthenamesuggests,comeswhentheequations ofelectrodynamicsareformulatedsoastobe“manifestly”invariantundertheLorentz transformationsofrelativitytheory,asdiscussedbelow.

Recallasolutionofthescalarwaveequation

usingtheGreenfunction G satisfying

Fromastandardrepresentationforthedeltafunction,

with R = r r′,and T = t t′.ThecorrespondingFourierdecompositionofthe Greenfunction,

anditsdefiningequation(1.3.7),implythat

6 Recallthatthe“Lorentzgauge”isreallyaclassofgauges,aswecanreplace A by A + ∇ψ,and φ by φ ∂ψ/∂t,andstillsatisfy(1.3.3)aslongas ∇2ψ (1/c2) ∂2ψ/∂t2 =0.TheCoulombgauge condition,similarly,remainssatisfiedundersuch“restricted”gaugetransformationswith ∇2ψ =0, butforpotentialsthatfalloffatleastasfastas1/r, r beingthedistancefromthecenterofalocalized chargedistribution, ψ =0.WhatisgenerallycalledtheLorentzgaugeconditionwas actuallyproposed aquarter-centurybeforeH.A.LorentzbyL.V.Lorenz,whoalsoformulatedequationsequivalentto Maxwell’s,independentlyofMaxwellbutafewyearslater.SeeJ.D.JacksonandL.B.Okun,Rev. Mod.Phys. 73,663(2001).

Howcanwedealwiththesingularitiesat ω = ±kc intheintegrationover ω?A physicallyreasonableassumptionisthat G(r,t; r′,t′)is0for T = t t′ < 0,thatis, fortimesbeforethedeltafunction“source”isturnedon.Wecansatisfythiscondition byintroducingthepositiveinfinitesimal ǫ anddefiningthe retarded Greenfunction:

(1.3.11)

Nowthepoleslienotontherealaxisbutinthelowerhalfofthecomplex plane.Since e iωT → 0for T< 0andlarge,positiveimaginarypartsof ω,wecanreplacethe integrationpathin(1.3.11)byonealongtherealaxisandclosedinalarge(radius →∞)semicircleintheupperhalf-plane.Andsincetherearenopolesinside this closedpath,wehavethedesiredpropertythat G(r,t; r ′,t′)=0(t<t

For T = t t′ > 0,similarly,wecanclosetheintegrationpathwithaninfinitelylarge semicircleinthelowerhalfofthecomplexplane.Theintegrationpathnowencloses thepolesat ω = ±kc iǫ,andtheresiduetheoremgives

G(r,t; r ′,t′)= 1 2π 3 c 2iR ∞ −∞ dkeikR( 2πi

Thesolutionof(1.3.5),forexample,isthen

,t

undertheassumptionthatitistheretardedGreenfunctionthatis physicallymeaningful,ratherthanthe“advanced”Greenfunctionorsomelinearcombinationofadvanced

andretardedGreenfunctions.7 Thecontributionofthechargedensityat r′ tothe scalarpotentialat r attime t dependsonthevalueofthechargedensityattheretardedtime t −|r r′|/c,andlikewiseforthevectorpotential.Evaluationofthese potentialsgivesexpressionsthataremorecomplicatedthantrivially retardedversions oftheirstaticforms,aswenowrecallforasimplebutimportantexample.

Forapointcharge q movingsuchthatitspositionattime t is u(t), ρ(r′,t′)= qδ3[r′ u(t′)],andthescalarpotentialis

φ(r,t)= q 4πǫ0 d3

Toperformtheintegration,wechangevariablesfrom x′,y′,z′,t′ to y1 = x′ ux(t′), y2 =

φ(r,t)= q

(y4), (1.3.16)

wherenow r′ = u(t′), t′ = t −|r r′|/c,and J isthe4 × 4Jacobiandeterminant, J = ∂(y1,y2,y3,y4) ∂(x′,y′,z′,t′) , (1.3.17)

whichisfoundbystraightforwardalgebratobe J =1 [u(t′)/c] · r r′ |r r′| (1.3.18) Therefore, φ(r,t)= q 4πǫ

or,inmorecompactnotation, φ(r,t)= 1 4

(1.3.20)

where R isthedistancefromthechargetotheobservationpoint r, ˆ n istheunitvector pointingfromthepointchargetothepointofobservation, v = ˙ u isthevelocityofthe charge,andthesubscript“ret”meansthatallthequantitiesinbracketsareevaluated attheretardedtime t′ = t −|r r′|/c.Likewise,thesolutionof(1.3.4)fortheretarded vectorpotentialis

(1.3.21) sincethecurrentdensityassociatedwiththepointchargeis J = qvδ3[r u(t)].

7 Wefollowherethenearlyuniversalpracticeinclassicalelectrodynamicsofsettingto0the(zerotemperature)solutionsofthehomogeneousMaxwellequations,thatis,wepresumethereareno “source-free”fields.In quantum electrodynamics,however,therearefluctuatingfields,withobservable physicalconsequences,evenatzerotemperature.NontrivialsolutionsofthehomogeneousMaxwell equationsalsoappearintheclassicaltheorycalled stochasticelectrodynamics.SeeSection7.4.1.

ElementsofClassicalElectrodynamics

These Li´enard–Wiechertpotentials arecomplicated.Foronething, φ(r,t),forinstance,is not simply q/4πǫ0[R]ret,which“almosteveryonewould,atfirst,think.”8 Instead, φ(r,t)dependsnotonlyonthepositionofthechargeattheretardedtime t′ , butalsoonwhatthevelocitywasat t′.Forachargemovingwithconstantvelocity v alongthe x axis,forexample,

ifwedefineourcoordinatessuchthat,at t =0,thechargeisat(x =0,y =0,z =0). Thesolutionofthisequationfor t′ (<t)is

Since R = c(t t′)andthecomponentofvelocityalong r′ attheretardedtime t′ is v × (x vt′)/|r′|,itfollowsfrom(1.3.22)and(1.3.23)that [R Rv ˆ

andthereforethat

(1.3.25) and Ax(x,y,z,t)=

forachargedparticlemovingwithconstantvelocity v alongthe x direction. Wecanderivetheseresultsmoresimplyusingthefactthat,inspecialrelativity theory, φ and A transformasthecomponentsofafour-vector(φ/c, A).Inaspacetimecoordinatesystem(x′,y′,z′,t′)inwhichacharge q isatrest,

′(x ′ ,y ′ ,z ′,t′)= q

Thecoordinates(x,y,z,t)inthe“lab”frame,inwhichthechargeismovinginthe positive x directionwithconstantvelocity v,arerelatedtotherest-framecoordinates bytheLorentztransformations:

8 Feynman,Leighton,andSands,VolumeII,p.21–9.(WerefertobooksintheBibliographyusing theirauthors’italicizedsurnames.)

Thepotential φ(x,y,x,t),forinstance,isobtainedbytransforming

,z

,t

) fromtherestframeofthechargetoaframemovingwithvelocity v alongthe x axis:

whichisjust(1.3.25).Thatweobtained(1.3.25)directlyfromthesolutionofthe waveequationfor φ withoutmakinganyLorentztransformationsisnotsurprising, ofcourse,becausetheMaxwellequationsarethecorrectequationsofelectromagnetic theoryinspecialrelativity;theyarecorrectinanyinertialframe. Indeed,theLi´enard–Wiechertpotentialswereobtainedbeforethedevelopmentofthetheoryofspecial relativity.Whatspecialrelativityshowsisthat v canberegardedastherelative velocitybetweenthecoordinatesysteminwhichthechargeisatrestandthesystem inwhichitismovingwithvelocity v.

Oncewehave φ and A,wecanobtaintheelectricandmagneticfieldsusing E = −∇φ ∂A/∂t and B = ∇× A.From(1.3.25)andthecorrespondingformulas for A,

and

Moregenerally,theelectricandmagneticfieldstransformas

whentheprimedframemoveswithrespecttotheunprimedframeat aconstant velocity v inthe x direction.9

Theresult(1.3.31),forexample,canbeobtainedfromtheCoulombfieldinaframe inwhichthechargeisatrest,usingthesetransformationlawstorelatethefieldsin thetwoinertialframes.Inparticular,apurelyelectricfieldinoneframeimpliesa magneticfieldinanother,andviceversa.10

Inthecaseofachargedparticlemovingwithavelocitythatvariesintime,the electricandmagneticfieldscanbecalculatedfromtheLi´enard–Wiechertpotentials, asisdoneinstandardtexts.Here,weonlyrecalltheformulasforthe(retarded)fields intheradiationzonewhentheparticlemotionisnon-relativistic(v ≪ c):

ThepowerradiatedpersolidangleiscalculatedusingthesefieldsandthePoynting vector:

where θ istheanglebetween r andtheacceleration v.Integrationoverallsolidangles resultsinthe(non-relativistic)Larmorformulafortheradiatedpower:

9 ThesetransformationsareappliedinSection2.8toblackbodyradiationfields.

10 “Whatledmemoreorlessdirectlytothespecialtheoryofrelativitywastheconvictionthatthe electromotiveforceactingonabodyinmotioninamagneticfieldwasnothingelsebutanelectric field.”—Einstein,quotedinR.S.Shankland,Am.J.Phys. 32,16(1964),p.35.

1.3.2CoulombGauge

IntheCoulombgaugewechoose χ suchthat ∇· A =0.11 Inthisgauge,

and

ThescalarpotentialsatisfiesthePoissonequation(1.3.37)andisgivenintermsofthe chargedensity ρ(r,t)bytheinstantaneousCoulombpotential,

ifthechargedistributionisspecifiedthroughoutallspace.(Ofcourse,thisisnot alwaysthecase;inmanyexamplesinelectrostatics,forexample,thepotentialsare specifiedonconductors,andsurfacechargedistributionsarededuced after solving Laplace’sequationwithboundaryconditions.)Equation(1.3.38)canberewritten using Helmholtz’stheorem:anyvectorfield F(r,t)canbeuniquelydecomposedin transverseandlongitudinalpartsdefinedrespectivelyby12

Inotherwords, F = F⊥ + F ,with ∇· F⊥ = ∇× F =0.IntheCoulombgaugethe vectorpotential A isatransversevectorfield(∇· A =0);writing J = J⊥ + J in (1.3.38),wehave

wherewehaveusedthechargeconservationcondition(1.1.6).

AlthoughtheLorentzgaugeisperfectlysuitedforrelativistictheory,theCoulomb gaugealsoofferssomeadvantages,andisalmostalwaysusedinquantumoptics.Inthe Coulombgauge,thelongitudinalfield E = −∇φ iseffectivelyeliminatedandreplaced byCoulombinteractionsofthecharges,andquantizationofthefieldtheninvolves

11 Forexplicitformsofthe χ’sthateffectthegaugetransformations,seeJ.D.Jackson,Am.J. Phys. 70,917(2002).

12 AproofofHelmholtz’stheoremisoutlinedinAppendixB.

Turn static files into dynamic content formats.

Create a flipbook