An introduction to quantitative ecology timothy e. essington - Download the entire ebook instantly a

Page 1


https://ebookmass.com/product/an-introduction-toquantitative-ecology-timothy-e-essington/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Introduction to Quantitative Ecology: Mathematical and Statistical Modelling for Beginners Timothy E. Essington

https://ebookmass.com/product/introduction-to-quantitative-ecologymathematical-and-statistical-modelling-for-beginners-timothy-eessington/ ebookmass.com

Introduction to Quantitative Ecology: Mathematical and Statistical Modelling for Beginners Essington

https://ebookmass.com/product/introduction-to-quantitative-ecologymathematical-and-statistical-modelling-for-beginners-essington/

ebookmass.com

An Introduction to Management Science: Quantitative Approach 15th Edition David R. Anderson

https://ebookmass.com/product/an-introduction-to-management-sciencequantitative-approach-15th-edition-david-r-anderson/

ebookmass.com

History, Disrupted: How Social Media and the World Wide Web Have Changed the Past Jason Steinhauer

https://ebookmass.com/product/history-disrupted-how-social-media-andthe-world-wide-web-have-changed-the-past-jason-steinhauer/ ebookmass.com

The Oxford World History Of Empire Volume One: The Imperial Experience 1st Edition Edition Peter Fibiger Bang

https://ebookmass.com/product/the-oxford-world-history-of-empirevolume-one-the-imperial-experience-1st-edition-edition-peter-fibigerbang/

ebookmass.com

Criminal Procedure: Law and Practice Tenth Edition, Student Edition. Edition Del Carmen

https://ebookmass.com/product/criminal-procedure-law-and-practicetenth-edition-student-edition-edition-del-carmen/

ebookmass.com

Branded By The Dragon Prince (Lords Of Fire & Ash) Kiera Legend

https://ebookmass.com/product/branded-by-the-dragon-prince-lords-offire-ash-kiera-legend/

ebookmass.com

Connecting Gospels: Beyond the Canonical/Non-Canonical Divide Francis Watson

https://ebookmass.com/product/connecting-gospels-beyond-the-canonicalnon-canonical-divide-francis-watson/

ebookmass.com

Nanopharmaceuticals: Expectations and Realities of Multifunctional Drug Delivery Systems: Volume 1: Expectations and Realities of Multifunctional Drug Delivery Systems 1st Edition Ranjita Shegokar (Editor)

https://ebookmass.com/product/nanopharmaceuticals-expectations-andrealities-of-multifunctional-drug-delivery-systemsvolume-1-expectations-and-realities-of-multifunctional-drug-deliverysystems-1st-edition-ranjita-shegokar-ed/ ebookmass.com

Multifunctional Antennas and Arrays for Wireless Communication Systems (Wiley - IEEE) 1st Edition

https://ebookmass.com/product/multifunctional-antennas-and-arrays-forwireless-communication-systems-wiley-ieee-1st-edition/

ebookmass.com

INTRODUCTIONTOQUANTITATIVEECOLOGY

IntroductiontoQuantitativeEcology

MathematicalandStatisticalModellingforBeginners

Professor,SchoolofAquaticandFisheriesSciences; UniversityofWashington,USA

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries

©TimothyE.Essington2021

Themoralrightsoftheauthorhavebeenasserted

FirstEditionpublishedin2021

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2021937956

ISBN978–0–19–284347–0(hbk.)

ISBN978–0–19–284348–7(pbk.)

DOI:10.1093/oso/9780192843470.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

Acknowledgements

IwillbeforevergratefulfortheoutstandingteachersandmentorsthatI’vehadthrough theyears,whonotonlyinspiredmetodevelopmyquantitativetoolboxbutalsoprovided mewiththetemplateforhowtoeffectivelyteachthismaterial.ThankyouTonyStarfield, AnthonyIves,andSteveCarpenterforshowingmehowitisdone.Iwillalwaysbegrateful toJamesKitchellfortakingachanceonagraduatestudenthebarelyknewandputme intheperfectenvironmenttosucceed.Wemissyou,Jim.

Ialsothankthemanyexcellentgraduate-studentteachingassistantswhohelpedme refinemyteaching,bringingfreshperspectivesandacriticaleyetomycoursematerial andinstructionalmethods:AnneBeaudreau,BridgetFerriss,KristinMarshall,Emma Hodgson,LauraKoehn,PamelaMoriarty,MaiaKapur,MariaKuruvilla,andHelena McMonagle.Thankyoutoallofthestudentsoverthepastfewyearswhosekeeneyefor detailhelpedmeremoveerrorsandwhosethoughtfulcontributionsidentifiedwherethe textneededimprovement.

Finally,andmostimportantly,thankyouShereenforallofyourlove,support,and encouragement.Youare,andalwayswillbe,theloveofmylifeandasourceofendless inspiration.

AboutThisBook

Fordecades,quantitativeecologyhasbeentaughtintwodistinctsilos:“mathematical ecology,”(sometimescalled“theoreticalecology”),and“statisticalecology.”Foralong time,thatmodelofteachingworkedverywell.Studentschosewhichtopicstheywanted tofocuson,andselectedcoursesaccordinglytolearnin-depthknowledgeineachofthese topics.Becausemostofthesecourseswerenotrequired,studentsgenerallywereopting intothistraining:thosethathadpriortraining,confidence,orinnateskillsinquantitative reasoningnaturallygravitatedtowardsthismaterial.

Thefieldofecologyhaschangedtothepointwherethistrainingmodelisnolonger sufficient.Theapplicationofmethodsthatwerespecializedtwentyyearsagoarenow routineandubiquitousinecologicalresearchandliterature.Academiccurriculathatdo notspecificallyincorporatetraininginquantitativetoolsandtheirapplicationsinecology, conservation,andnaturalresourcemanagementarenotpreparingstudentsfortheir careers.Toensurethatstudentscanevaluatecontemporaryscientificliterature,moderndaytraininginecologyneedstoincludetreatmentofmathematicalandstatisticalecology forallstudents,even(orespecially)forstudentswhoareintimidated,lackconfidence, orhavebeentoldthat“theyaren’tgoodatmath.”Inotherwords,weneedamore encouragingapproachthanwhatwe’vebeendoing.

Thisbookrepresentsmyattemptatachievingthis—toprovideinformationonboth mathematicalandandstatisticalapproachesthathelpusbetterunderstandthenatural worldaroundus.

Inattemptingtoachievethisgoal,Ifacedanimmediatechallenge:howcouldI presentaninvitingandpracticalapproachtoquantitativeecology,onethatcovers bothmathematicalandstatisticalmodeling,thatdidn’tleavestudentsoverwhelmed, frustrated,anduninterested?

Mysolutionistoprovide foundational traininginthemainconceptsandskills inmathematicalandstatisticalecology,presentingconceptsinthe leasttechnical way possible.

Someearlierreadersexpressedconcernswithmysolution.Bybuildingfoundations, notspecialization,thereisn’tenoughdepthtoprepareindividualstotacklethemore complexproblemsthatpractitionersarelikelytoface.Iagree100%.Ialsoknowthat alargenumberofstudentsinmyclasswillneverbecomepractitionersbutinstead aredelightedtohavebecomequantitativelyfluent:theycanreadprimaryresearchand understandwhatwasdone,why,andhowthefindingsoughttobeinterpreted.AndIalso knowthatnosinglebookorcoursewillprepareindividualsnewtoanyfieldtotacklethe problemsthatpractitionersfaceeveryday.Areyouageneticistafteryoutakeasemester ofgenetics?Areyouapublichealthexpertafteryoutakeoneepidemiologyclass?Of coursenot.Butyoubuiltthefoundationsofknowledgethatallowyoutopursuemore advancedtraining.ThatiswhatI’veattemptedtodohere.Forthisveryreason,Iprovide

informationintiers:thefoundationslevelforeveryone,andtheadvancedlevelforthose whofeeltheyhavemasteredthefoundationsandarereadyformoretechnicalnuance.

“CanIhandlethis?”

Youdon’tneedextensivequantitativebackgroundtomasterthesemethods.Generally, youneedtobefamiliarwithbasicalgebraandrememberwhataderivativeisandwhat anintegraldoes(thoughIpromisetonevermakeyousolveanintegral).Youshould rememberbasicprobabilityrules,andrememberwhatp-valuesandconfidenceintervals are.Youshouldrememberwhatalogarithmis,andrememberthattherearerulesthat governtheirproperties(evenifyoudonotremembertheserules).

Whatelsedoyouneed?First,abitofpatiencewithyourself.Everythinginhereisa newskill(eventheconceptualmaterial).Likeallskills,theonlywaytomasterthemis todothem—repeatedly.Tostealananalogyfromacolleagueofmine,onecouldread atwelve-volumetomeonhowtodotheperfectpushup.Youcouldrereadit,highlight text,andwritenotes,butyoustillwouldn’tbeabletodoaperfectpushup.Theonlyway todothatistopractice,overandoveragain.Andtheywillbehardertodothantheir descriptionwouldleaveyoutobelieve.“Plantfeetandpalmsonfloorwithhandsfacing forwardandforearmsnearlyparalleltothefloor.Keepingyourtorso,hipsandlegsin alignment,useyourarmstoraiseyourselfupwards,andthendescenddownwardsbut donotallowanypartofyourbodyapartfromhandsandfeettotouchthefloor.”Yet, withoutfail,everytimesomeonedoestheirfirstpushup,somethinggoeswrong.Their backsidemightstickupintheair,theirarmsmightbeatastrangeangle,ortheirlegs mightbend. Doingisalwaysharderthanitsounds.Ithinkitishelpfultorememberthisas youworkthroughthebook.Yes,itwillbehard,andharderthanitseemsfromthebook’s text.Thatisanaturalpartoflearning.

Youalsoneedabitofpatiencewithme.WhileI’vetriedtousenotationthatissensible andconsistent,thefieldasawholeisnotterriblyconsistent.Forinstance,inmathematical ecology,theparameter r usuallymeans“intrinsicrateofpopulationgrowth.”Instatistics, theparameter r isthe“rateparameterdescribingdensityinanegativebinomialor Poissonprobabilitydistribution.”WeusecommonGreekletterslike α and β allofthe timeincompletelydifferentcontextsindynamicequationsofecologicalsystemsandin statisticalnotation.I’vetriedmyverybesttoavoidusingthesameparametertomean morethanonething.But,whenaparticularfieldhasaconventiononnotation,I’llusually usethatconventionforsakeofconsistencywiththatfield.

Findamathematicsrefresherinchapter11(pp.183–86).

Howtousethisbook

SomecontextonhowIdevelopedthistextwillbeuseful.Idevelopedthistextafter nearlytwentyyearsofteachingundergraduatesandgraduatesquantitativeecology.In myclass,Ifocusonthe“why”ofquantitativeecology.Thatis,howdowelearnabout

thenaturalworldaroundusthroughmodelsthatliveonourcomputers?Thisisthetrue artofmodeling—learningabouttherealworldfromadeepknowledgeofthemodel world.Inotherwords,thisbookisabouttheprocessoflearningabouttherealworld throughmodels.

Still,acommondemandfromstudentswastogainmoreknowledgeofthe“how.”How dowecodeupmodels?Howdowedocertaincalculations?Howcanweharnessthefull capacitiesofcommonlyavailablesoftwarepackages?Thesewerereasonabledemands. So,Ineededacompromise.

Thisbookreflectsthatcompromise.Throughoutthetext,Iemphasizethe“why” andthenlinktothe“how.”Idomybesttoseparatethetwo,astheyaredistinct topicsthatrequiredifferentmindsets.Somepeoplearereallyskilledattakingaconcrete findingfromamathematicalmodelandturningthatintoanabstraction,something generalizablethatformsapredictionabouttherealword.Thosesamepeoplemightbe terrifiedbyprogramming.Otherscanwritebeautiful,elegantcodethatshowsthelogical consequencesofmodelassumptionsbutstruggletomakesenseofthemodelwithrespect totherealworld.Bothskillsneedtobedeveloped.

Thefirstpartbuildsthefoundationsofconstructingandanalyzingmathematical models.Toretaincommonprinciples,notation,andmodelstructures,thesechapters willexplorethedifferentwaysonecanbuildandaskquestionsaboutpopulations.Asa result,manyothertypesofmodelsaren’tgivenanytreatment(seechapter18foralistof additionaltopics).Butthebenefitisthatyouareabletoseehowonecanmakedifferent decisionsaboutwhattoincludeandwhattoomitinyourmodel,andhowthosedecisions areguidedbydifferentmodelquestions.Thesecondpartbuildsfoundationsoffitting ecologicalmodelstodatatoestimateparametersofourmodelsandtousemodelsas hypothesistestingtools.Thethirdpartisdedicatedtothetechnical“skills.”Youmight finditmostusefultofirstexploretheconceptualfoundationsineachchapterandthen moveaheadtospecificskillsassociatedwitheachchapteronceyoufeelasthoughyou haveagoodgraspoftheconcepts.

Thelastpartprovidesasyntheticmodelingexercise(chapter17)thatintegrates componentsfromalloftheearliersections,whilealsogivingyouamomenttoappreciate whatyou’velearnedandtothinkaboutwhatyoumightdowiththisknowledge,moving forward.

Throughoutthebook,you’llseesectionslabeled“Advanced”;thesesectionscontain moredetailedexplorationsorexplanationsoftopics.Feelfreetoskiptheseifyouarejust beginningtoexplorequantitativeecology,savingthemforafteryouhavemasteredthe foundationalmaterial.Byincludingtheseadvancedsections,itismyhopethatthisbook canguideyouthroughseveralstagesofyourdevelopmentasaquantitativeecologist.

3.2Modelingusingmatrixnotation

4.1Introduction

4.1.1Considerthefollowingtwoecologicalscenarios

4.4.2Abriefasideonpredator-preymodels

4.4.3Backgroundandframework

4.4.4Calculatingstability

5.1.1Whatcausesstochasticity?

5.2.1Reason

5.2.2Reason

5.2.3So,whyaren’tallmodelsstochastic?

5.2.4Advanced:Whydoesstochasticitylowerpopulationabundance?

5.2.5Whywasthearithmeticmeanincorrect?

5.3Density-independentpredictions:Ananalyticresult

5.3.1Projectingforwardwithunknownfuturestochasticity

5.5Estimatingextinctionrisk

5.5.1Advanced:Autocorrelation

5.7.1Alleeeffects

5.8Structuredstochasticmodels

7.1Introduction

7.1.1Whatisarandomvariable?

7.2.1Keythingsaboutthisdistribution

7.2.2Theprobabilitymassfunction

7.2.3WhenwouldIusethis?

7.2.4Propertiesofthefunction

7.2.5Example

7.3Poisson

7.3.1Keythingsaboutthisdistribution

7.3.2Theprobabilityfunction

7.3.3WhenwouldIusethis?

7.3.4Propertiesofthefunction

7.4Negativebinomial

7.4.1Keythingsaboutthisfunction

7.4.2WhenwouldIusethis?

7.4.3Theprobabilityfunction

7.4.4Propertiesofthefunction

7.4.5Example

7.5Normal

7.5.1Keythingsaboutthisdistribution

7.5.2WhenwouldIusethis?

7.5.3Theprobabilitydensityfunction

7.5.4Propertiesofthefunction

7.6Log-normal

7.6.1Keythingsaboutthisdistribution

7.6.2WhenwouldIusethis?

7.6.3Theprobabilitydensityfunction

7.6.4Propertiesofthefunction

7.6.5Example

7.7Advanced:Otherdistributions

7.7.1Thegammadistribution

7.7.2Thebetadistribution

7.7.3Student’st-distribution

7.7.4Thebeta-binomialdistribution

7.7.5Zero-inflatedmodels

8 LikelihoodandItsApplications

8.1Introduction

8.1.1Wasthisafaircoin?

8.1.2Likelihoodtotherescue

8.1.3Maximumlikelihoodestimation

8.1.4Whatlikelihoodisnot

8.2Parameterestimationusinglikelihood

8.3Uncertaintyinmaximumlikelihoodparameterestimates

8.3.1Calculatingconfidenceintervalsusinglikelihoods

8.3.2Tosummarize

8.3.3Practiceexample 1132

8.4Likelihoodwithmultipleobservations

8.5Advanced:Nuisanceparameters

8.5.1Whatisalikelihoodprofile?

8.5.2Example

8.5.3Thelikelihoodprofile

8.6Estimatingparametersthatdonotappearinprobabilityfunctions

8.6.1EntanglementsofHector’sdolphins

8.7Estimatingparametersofdynamicmodels

10.2WhatisBayes’theorem,andhowisitusedinstatistics andmodelselection?

10.2.1Doesn’tthepriorprobabilityinfluencetheposteriorprobability?

PartIIISkills

11.3.1Dimensionsofmatrices

11.3.3Multiplyingtwomatrices

12.1Practicum:AlogisticpopulationmodelinExcel

13.1.1First,someorientation

13.1.2WritingandrunningRcode

13.1.3Statisticalfunctions

13.1.4Basicplotting

14.2Skillsformultivariablemodels

14.2.1Calculatingisoclines

14.4Skillsforstochasticmodels

14.4.1Stochasticmodelsinspreadsheets

14.4.2StochasticmodelsinR

14.5.2TheAdams-Bashfordmethod

14.5.3Runge-Kuttamethods

15.1.1Typesofsensitivityanalysis

15.1.2Stepsinsensitivityanalysis

16.1.1Maximumlikelihoodestimation:Directmethod

16.1.2Maximumlikelihoodestimation:Numericalmethods

16.3.1Profilesinspreadsheets

PartI FundamentalsofDynamic Models

WhyDoWeModel?

Convenientapproximationsbringyouclosesttocomprehendingthetruenatureof things.

Model:n.Asimplificationofreality.

Oneofthefirstandmostimportantthingstolearnaboutquantitativeecologyis thateveryoneofourmodelsis,bydefinition,wrong(Box1979).Theyarewrong becausetheyvastlysimplifytherealworld.Realityisacomplexmessyplace:causeeffectrelationshipsareobscuredbydeeplycontextualandscale-dependentinteractions amongmultiplemovingparts.Wecannotpossiblyhopetorepresentallofrealitywith aseriesofmathematicalorstatisticalexpressions.Luckily,modelersdon’tintendtodo this.Rather,modelerssimplifyreality onpurpose,sothatwecanbetterunderstandit.

Thisisnodifferentthanotherwaysthathumansunderstandtheworld.Rightnow, you’rereadingthisbook,presumablyconcentratingonthecontentwithinit.Areyou thinkingaboutthetemperatureoftheroomrightnow?Areyoupayingattentiontothe personwhojustwalkedbyyouroffice?Doyouseealltheclutteronyourdesk?Doyou feelthetextureofyourclothesonyourskin?Mostofthetime,youareabletofilterout manyelementsofyoursurroundingstofocusinonthetaskathand.Inotherwords, yourbrainissimplifyingyourperceptionofrealityatthatmomentsothatyou’renot overwhelmedbystimuli.

Humancognitivedevelopmentprovidesanotherexampleofhowsimplifyingthe worldhelpsusunderstandit.Considerparentsspeakingtotheirinfantchildusing“baby talk.”Thismayseemlikeafunwayforparentstoengagewiththeirchild,butitturns outthatusingsimplifiedspeechpatternsisimportanttohelpinfantslearnlanguage.This simplified“infant-directedspeech”helpsinfantsunderstandthatthenoisescomingout oftheirparent’smouthconsistsofdiscretewords(Thiessenetal.2005).Thebabytalk servesasasimplifiedmodeloftheactuallanguage,thelatterbeingfartoocomplexfor infantstograsp.

Finally,ifyoulookatanypioneeringpieceofscience,you’llfindasimplifiedversion ofrealitybehindit.BobPainerevolutionizedourunderstandingofcommunityecology

bycreatingtheideaofkeystonespeciesspeciesthatarerelativelyscarcebuthave outsizedeffectsonecosystemsandcommunities.Hecametothisfindingthroughcareful observationsandexperimentsonTatooshIsland.Throughthispainstakingwork,Paine producedanelegantconceptualmodelofhowtheintertidalanimalcommunityworked. Thestarfish Pisaster consumesmussels,permittingbarnaclestopersist.Remove Pisaster, andmusselstakeover. Pisaster isakeystonespecieswhosepresencedictatescommunity structure.Thisisanelegantyetsimplemodelofthekeyprocessesregulatingintertidal communities.Thinkofalltheelementsthatare not includedinthisview:nomore thanthreespeciesareconsidered,thespecificprocessesthatdictaterecruitmentand settlementofbarnaclesandmusselsarenotconsidered(allofwhichhavebeenand continuetobeactiveareasofresearch),andtheeffectofbarnaclesonmusselson Pisaster areabsent.Sowhywasthissuchapowerfulmodel?Becausebyremovingtheelements ofrealitythatwerenotcruciallyimportanttothequestionathand,Painewasableto stripawaythenoiseandrevealafewkeyprocesses(competitionandpredation).

Hopefully,bynow,youareconvincedthatsimplifyingrealityisaverynaturalwayto learnandgainunderstanding.Ofcourse,thefieldofecologicalmodelinggoesbeyond simplifyingtherealworld;wetakethosesimplificationsandmakethemexplicitinthe formofequationsandrelationships.Allofoursimplificationsaretransparentforall tosee.Becausethisisanormalandnecessarywaytounderstandtheworldaround us,criticizingmodelsas“unrealistic”isfoolish,becauseallmodelsare,bydefinition, unrealistic.

Yet,ifweweretostophere,ourdefinitionwouldbeincomplete.Anyunrealistic depictionoftherealworldcouldbejustifiedunderthecoverthat“allmodelsarewrong.” Clearly,weneedtorefinetheterminologyinsomeway.Starfield(1997)claimedthatwe seekmodelsthatare faithful toreality.Amodelthatincludesphotosyntheticantelopeis notfaithfultoreality.Amodelthatincludesalinkagebetweenplantproductivityand antelopepopulationdynamicsisfaithfultoreality,evenitifdoesnotexplicitlymodel theprocessofphotosynthesis,plantphysiology,theactualchewinganddigestionofthe plants,orhowantelopesallocatenutrientsandenergy.

Asecondandcriticalrefinementistoclarifythatmodelsexistforaspecificpurpose. Modelsarenotasubstituteforexperience(Walters1986);rather,theyprovideatoolto guideourexperienceinveryspecificways.Thus,welandonamuch-improveddefinition formodel:

model: n.Apurposefulandfaithfulsimplificationofreality.

Theterm purposeful isreallyimportant.Itisthewordthatallowsustomakedecisions aboutwhataspectsoftherealworldtoincludeandwhichtoomit.Itisalsothewordthat allowsustoevaluateamodel.Take,forexample,thetwomapsinFigure1.1.Atthetopis amapshowingthepredictedriskoflargefires.Onthebottom,thesameareaisdepicted butshowingmaintransitroutes.Amap,likeamodel,isapurposefulsimplificationof reality.Nomapcontainseverypieceofspatialinformationthatonemighteverneed.So, weevaluatethemodelonthebasisofhowwellitservesitspurpose.Itwouldbefoolish

Figure1.1 TwomapsoftheUnitedStates.ThetopshowstheprobabilitiesoflargefiresinJuly 2017;thebottomshowstheinterstatehighwaysystem.TopmapfromtheU.S.GeologicalSurvey:https://firedanger.cr.usgs.gov/;bottommapfromtheU.S.DepartmentofTransportation:https:// www.fhwa.dot.gov/interstate/finalmap.cfm.

tocriticizethemodelatthetopforfailingtoprovideinformationonhowtotravelfrom Houston,TX,toSacramento,CA.Likewise,noonewouldtrytousethemodelonthe bottomtodeployfirefightingresources.

Becausemodelsaresimplificationsofreality,itishelpfultokeeptheboundary betweentherealworldandthemodelworldinmind.Therealworldcontainseverything happeningateveryscale.It’saterrifyingplacetotrytodoscience.Themodelworld iscarvedoutofthisplace;itcontainsasubsetoftherealworld.Becausethemodel worldissimple,youcanunderstandeveryfacetofit.Inamodelworld,youare omniscient.Youknoweveryrule,andeveryrelationship.Betteryet,youcanperform experimentsonamodelthatyoucouldneverdointherealworldtoclarifycause-effect relationships.

Butrememberthatthegoalofmodelingisn’ttounderstandthemodel;itisto understandtherealworld.Wewanttotakedeepunderstandingofthemodelworldand usethattoanswerquestionsabouttherealworld.Thistranslationbetweenthemodel worldandrealworldisimpossibleifyouhaven’tcarefullyconstructedtheboundary betweenthem:

Thereisnoneedtoaskthequestion“Isthemodeltrue?”.If“truth”istobethe “wholetruth”theanswermustbe“No”.Theonlyquestionofinterestis“Isthemodel illuminatinganduseful?”(Box1979,203)

Onelastcommentontherealworld–modelworlddistinctionisthat,whilethereare manyexcellentmathematiciansandstatisticiansouttherewhocandowondrousthings withequations,onlyasubsetofthemareexcellentmodelers.Whatsetsthemapart? Theyareskilledattranslatingbetweenmodelworldsandrealworlds.Notethatthis skillisnotrestrictedtomathematiciansandstatisticians.Inmyexperience,theability totranslatebetweenmodelworldsandrealworldsisthesinglemostimportantskillin ecologicalmodeling.Andbecausemodeltranslationisaskillthatanyonecanlearn, advancedmathematicalandstatisticaltrainingisnotaprerequisitetobecomingan effectiveecologicalmodeler.Ifyoufindyourselfstuckinamathematicalquagmire,find acolleaguewhocanhelpyouout.Inmyexperience,algebragetsabout60%ofthejob done,andcalculusandlinearalgebragetsanother30%ofthejobdone,leaving10%to moreadvancedtopics.

Thevalueofmodelinginecology

Along-standingdebateintheecologicalcommunityconcernswhethermorediverse foodwebsaremorestable.Thebasicideasharedbymanyprominentecologistsin themiddleofthelastcenturywasthatifmanyspeciesoccupiedsimilarecological roles,theecosystemfunctionwouldbestable,becauseitwouldbelessimpactedby thevariabilityintheabundanceofindividualspecies.RobertMaytookthisseemingly

intuitiveideaandputittothetestmathematically:givenasystemofinteracting species,aremorecomplexsystemslikelytobemoreorlessstableovertime?The processofansweringthatquestionledtoseveralmorequestions,mostnotably,“How dowedefinestable?”Ifwedefinestabilityastheabilityofasystemtoquicklyreturn toanequilibriumstateafterdisturbance,thenMayshowedusthatmorecomplex foodwebsarelessstablethansimpleones,insharpcontrasttotheintuitivelogic behindthediversity-stabilityhypothesis(May1973).Didthismeanthattheother ecologistswerewrong,orthatRobertMaydidthemathwrong?Notatall.Rather, itforcedthecommunitytothinkmoreclearlywhatwemeantby“stability”and “complexity.”Manygenerationsofmodelsandexperimentalstudieshavedonejust that:theyhaveasked,kindsofstabilityexistandhowdodifferenttypesoffoodweb structurespromotethesekindsofstability(Dunneetal.2002)?

Whenyourejecttheextremestancesandrecognizemodelingasaveryhumanwayof gropingforunderstanding,itshouldbeobviouswhowillbenefitmostfromit:thosewho engageinitdirectly.(Walters1986,45)

Oneofthegreatestbenefitsofmodelingcomesfromtheprocessofmodeldevelopment:byforcingyoutolaybareyourimplicitnotionsabouthowasystem“works,” youcanexposethosenotionstothelightofday,potentiallyrevealinglogicalflawsor inconsistencies.Itisakintowritingascientificpaper:you’vedonealloftheanalyses, youthinkyouunderstandtheentirestory,butonceyoustartwriting,youmayrealize thatyourinterpretationcriticallyhingesonsomeimplicitassumptionthatyoudidn’t evenknowyouheld.

Asaresult,mostofthelearningthataccompaniesamodelingexerciseisactually quitefarremovedfromtheendproductofthemodel.Sayyouarebuildingamodelto predictresidencetimesofmercuryinawetland.Youfindyournearestmathematical modeler,askthemtodoitforyou,andgettheanswer.Allyouwouldgetwouldbe someanswer(presumablyanumber,perhapswitherrorbars).Imagineinsteadthat youbuildthemodelyourself.Nowyouwouldimmediatelystartaskingnewquestions. Whatwouldgoverntheresidencetimeofmercuryinawetland?Wheredoesmostofthe mercuryresideinawetland?Whatinformationisavailabletoassignnumericalvalues tomodelparameters?Arethereanycrucialdatagapsthatpreventyoufrommakinga preciseprediction?Isthemodelparticularlysensitivetoasmallhandfulofassumptions orparameters?Clearly,you’lllearnalotaboutyourownpreconceptionsabouthowthe wetlandprocessesmercury.Butmoreimportantly,theprocessofmodeldevelopment mayleadyoutorealizethatthere’sanalternativeandfarmoreimportantquestiontobe answered.Ifyouweren’tactivelyengagedinthemodelingprocess,thisopportunityfor learningwouldbelost.

Acentralthemeofthisbookisthatanyonecanbuildamathematicalmodeltoanswer scientificquestions.Modelsneednotbecomplexorintimidatingtobeuseful,aslongas you’recarefulaboutwhat“use”youintend.

1.1Mythsofmodeling

Starfield(1997)outlinesseveralmythsaboutmathematicalmodelsusedfordecision supportinwildlifeandconservationbiology.BelowIlistseveralofthesemythsandhis responses.Theyapplyspecificallytoso-calledtacticalmodels,whicharemodelsthatare usedtoaiddecision-making,buttheycanbeappliedtoanysortofmodel.

Theprimarypurposeofbuildingmodelsistomakepredictions:True,models predictthings.Atmosphericmodelspredicttheweatherfromonedaytothenext. Theytakeahugeamountofdata,putthemintocomplexphysicalmodels,and generatepredictionsaboutweatherhazardsandallmannerofotherthings.In ecology,werarelyhavetheabilitytopredictoutcomesaspreciselyaswecanpredict tomorrow’sweather.Weusemodeloutputsinverydifferentways.Modelsreveal “whatispossible,”revealsurprisingconsequencesofrelativelysimpleassumptions, andhelpdecision-makingbydeterminingwhenandwherepolicystrategiesare likelytobeeffective.

Amodelcannotbebuiltwithincompleteunderstandingofthebehaviorofa system:Wealwayshavetomakedecisionsaboutthenaturalworld,andinformation isalmostalwayslimited.Amodelrepresentsasingleviewthatsummarizesyour understandingofthesystem.Incaseswheretherearemultipleplausibleinterpretationsforhowthesystemworks,youcanbuildmultiplemodelstorevealthe consequencesofthesealternativeviews.Besides,ifyoucompletelyunderstandthe system,whyexactlyareyoubuildingamodel?

Itisnotusefultobuildamodeliftherearegapsinthedataitislikelytoneed (sothepriorityistocollectdata):Howdoweknowwhatdataareneeded?And howprecisedothosedataneedtobe?Ofcourse,havingdataisimportant,butit israrelytruethatmodelsarenotusefulintheabsenceofdata.Modelsarehugely helpfulinhelpingrefinedata-collectioneffortsbyshowingthedatagapsthathave thebiggestconsequencesintermsofdecision-making.

Amodelcannotbeusedinanywayorformuntilithasbeenvalidatedorbeen proventobeaccurate:Therealissueisthatthemodelneedstobeusedinaway thatisconsistentwiththemodel’spurpose.Ifamodelisdesignedtogiveaspecific predictionaboutaveryspecificdecision,then,ofcourse,themodelneedstoshow thatthepredictionisrobust.Butweusemodelsinsomanymorewaysthanthis.

Amodelmustbeasrealisticaspossible,accountingforallthedetailed intricaciesofabiologicalsystem:Weknowthatallmodelsarewrong.Remember, amodelisafaithfulandpurposefulrepresentationofreality.Giventhepurpose, doesthemodelfaithfullyrepresentreality?Ifyes,thenitisagoodmodel.

Modelingisaprocessakintomathematics;assuch,itcannotbeusedorunderstoodbymostmanagersandmanyfieldbiologists:Thisisthefundamental myththatIhopethistextdebunks.Fordecades,thismythledtotheseparationof decision-makersfromstakeholders,fromquantitativescientists.Thefieldhastruly

changed:nowmodelingfordecision-makingengagesstakeholdersanddecisionmakersinallstepsofthemodelprocess(Plagányietal.2013;Fultonetal.2014). Everyoneneedstounderstandamodeltouseit.

Modelingistime-consumingandexpensive,somodelsmustbedesignedto answerallthequestionsthathavebeenthoughtof,orquestionsthatmay ariseinthefuture;themoremultipurposethemodel,thebetterthevalueon isgettingforone’sinvestment:Ifamodelisapurposefulrepresentationofreality, thenhowcanithavemultiplepurposes?Howcanyoudecidewhatthemodeldoes anddoesnotincludeifyoudon’tknowhowitisgoingtobeused?Modelsneed notbeexpensiveandtime-consumingiftheyarefocusedonaspecificproblemat hand.

1.2Typesofmodels

Thereisnouniversallyagreed-upontypologyofmodels:ifyouput100modelersin100 differentroomsandaskthemtolistthetypesofmodels,you’llget100verydifferentlists. Thisisbecausetherearesomanydifferentdimensionsuponwhichsuchalistmightbe made.HereIreviewsomeofthemainwaysthatmodelsmightbedistinguishedfrom eachother.

1.2.1Organizationalscales

Weusuallythinkofbiologicalsystemsintermsofscales:cellular/subcellular;organismal; orgroupsofindividuals,populations,communities,foodwebs,ecosystems,andsoon. Modelsmightbedevelopedaroundanyoneofthosescales.Also,somemodelsspecificallyaddresscross-scaleinteractions:howprocessesthatoperateatoneorganizational scaleconstrainorenhancethoseoperatingathigherorlowerscales.

1.2.2Purpose

Modelsarebuiltforavarietyofpurposes.Perhapsthemostcommonpurposethatcomes tomindisprediction.Thismakessense,becausemodelsaregreattoolsforgenerating quantitativepredictions.Yet,modelsareusedforquiteabitmorethanthat.Theyareused toexplainthenaturalworld.Bybuildingmodelsandunderstandingtheirproperties,we canunderstandwhysystemsthathavepropertiesa,b,andcarepronetox,y,andz. Wealsousemodelstoassistindecision-making.Sayyouaredecidingwhethertocreate awildernessprotectionareaforanendangeredspecies,butthereisalotofuncertainty onthespecies’habitatneedsandthreatstothem.Youcoulduseamodeltoidentifythe decisionsthataremostrobusttothisuncertainty.Wealsousemodelstoestimatethings, especiallythingsthatcannotbeobserveddirectly.Forinstance,JohnHarte’sexcellent book ConsideraSphericalCow showsanexampleofestimatingthetotalnumberof cobblers(peoplewhofixshoes)intheUnitedStatesthatisbasedonsomeassumptions aboutthedemandforcobblers,howmanyhoursadayanaveragecobblermightwork,

Turn static files into dynamic content formats.

Create a flipbook