[Ebooks PDF] download Syllogistic logic and mathematical proof prof paolo. mugnai mancosu (prof mass

Page 1


SyllogisticLogicandMathematicalProofProf Paolo.MugnaiMancosu(ProfMassimo.)

https://ebookmass.com/product/syllogistic-logic-andmathematical-proof-prof-paolo-mugnai-mancosu-prof-massimo/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

An Introduction to Proof Theory: Normalization, CutElimination, and Consistency Proofs 1st Edition Paolo Mancosu

https://ebookmass.com/product/an-introduction-to-proof-theorynormalization-cut-elimination-and-consistency-proofs-1st-editionpaolo-mancosu/ ebookmass.com

Leibniz: General Inquiries on the Analysis of Notions and Truths Massimo Mugnai

https://ebookmass.com/product/leibniz-general-inquiries-on-theanalysis-of-notions-and-truths-massimo-mugnai/

ebookmass.com

Mathematical Rigour and Informal Proof 1st Edition Fenner Stanley Tanswell

https://ebookmass.com/product/mathematical-rigour-and-informalproof-1st-edition-fenner-stanley-tanswell/

ebookmass.com

The Monstrous-Feminine in Contemporary Japanese Popular Culture 1st ed. Edition Raechel Dumas

https://ebookmass.com/product/the-monstrous-feminine-in-contemporaryjapanese-popular-culture-1st-ed-edition-raechel-dumas/

ebookmass.com

Thieme Test Prep for the USMLEu00ae: Medical Histology and Embryology Q&A 1st Edition, (Ebook PDF)

https://ebookmass.com/product/thieme-test-prep-for-the-usmle-medicalhistology-and-embryology-qa-1st-edition-ebook-pdf/

ebookmass.com

Interface between English Language Education Policies and Practice: Examples from Various Contexts Eric Enongene Ekembe

https://ebookmass.com/product/interface-between-english-languageeducation-policies-and-practice-examples-from-various-contexts-ericenongene-ekembe/ ebookmass.com

Humanistic Crisis Management: Lessons Learned from COVID-19 Wolfgang Amann

https://ebookmass.com/product/humanistic-crisis-management-lessonslearned-from-covid-19-wolfgang-amann/

ebookmass.com

Television Production in Transition: Independence, Scale, Sustainability and the Digital Challenge (Palgrave Global Media Policy and Business) 1st ed. 2021 Edition Gillian

Doyle

https://ebookmass.com/product/television-production-in-transitionindependence-scale-sustainability-and-the-digital-challenge-palgraveglobal-media-policy-and-business-1st-ed-2021-edition-gillian-doyle/ ebookmass.com

Design, Fabrication and Calibration of a Tall Pneumatic Oedometer Apparatus Mehrankarimpour-Fard(Corresponding Author)Shayanzarbakhash Ghazal Rezaie Soufi Alireza Ahadi

B.P.Naveenc

https://ebookmass.com/product/design-fabrication-and-calibration-of-atall-pneumatic-oedometer-apparatus-mehrankarimpour-fardcorrespondingauthorshayanzarbakhash-ghazal-rezaie-soufi-alireza-ahadi-b-p-naveenc/ ebookmass.com

Pride (Single Dads Book 6) Rj Scott

https://ebookmass.com/product/pride-single-dads-book-6-rj-scott/

ebookmass.com

SyllogisticLogicandMathematicalProof

SyllogisticLogicand MathematicalProof

PAOLOMANCOSUAND

MASSIMOMUGNAI

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©PaoloMancosuandMassimoMugnai2023

Themoralrightsoftheauthorshavebeenasserted Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer

PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2023933211

ISBN978–0–19–887692–2 DOI:10.1093/oso/9780198876922.001.0001

PrintedandboundintheUKby ClaysLtd,ElcografS.p.A.

LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

Contents

Acknowledgments vii

Introduction1

1.AristotelianSyllogismandMathematicsinAntiquityand theMedievalPeriod7

2.ExtensionsoftheSyllogisminMedievalLogic17

2.1ObliqueTermsandRelationalSentencesinLateMedieval Logic:JohnBuridan,WilliamofOckham,andAlbertofSaxony17

2.2ExpositorySyllogism:IdentityandSingularTerms27

3.SyllogisticandMathematics:TheCaseofPiccolomini33

3.1Piccolomini’sSyllogisticReconstructionofEuclid ’ s Elements I.136

3.2ACriticalAnalysisofPiccolomini’sReconstruction45

4.ObliquitiesandMathematicsintheSeventeenthand EighteenthCenturies:FromJungiustoWolff51

4.1JohannesVagetius(1633–1691)57

4.2GottfriedWilhelmLeibniz(1646–1714)64

4.3JuanCaramuelLobkowitz(1606–1682)72

4.4GerolamoSaccheri(1667–1733)78

4.5AFirstConclusion80

5.TheExtentofSyllogisticReasoning:FromRüdigertoWolff83

5.1AndreasRüdiger(1673–1731)andHisSchoolonOblique Inferences83

5.2ChristianWolffonObliqueInferences89

5.3Mathematics,Philosophy,andSyllogisticInferencesin Wolff,Rüdiger,Müller,Hoffmann,andCrusius92

5.3.1Wolff:EveryMathematicalDemonstrationIsaChain ofSyllogisms92

5.3.2RüdigerandHisSchoolontheNon-SyllogisticNature ofMathematics98

5.3.2.1AndreasRüdigerontheNon-SyllogisticNature ofMathematics99

5.3.2.2SyllogismandMathematicalReasoningin Müller,Hoffmann,andCrusius113

5.3.2.3Appendix:Note(d)inRüdiger’ s DeSensu VerietFalsi (1722)118

6.LambertandKant125

6.1JohannHeinrichLambert(1728–1777)andtheTreatment ofRelationsinHisLogicalCalculus125

6.2KantandTraditionalLogic128

6.3KantonSyllogisticProofsandMathematics137

7.BernardBolzanoonNon-SyllogisticReasoning163

8.ThomasReid,WilliamHamilton,andAugustusDeMorgan177 Conclusion195

References 209

IndexofNames 223

Acknowledgments

Whilewritingthisbookwehaveincurredmanydebts.Wehavedecidedto onlylistinalphabeticalorderthenamesofthosefriendsandcolleagueswho havedirectlycontributedwiththeircommentstoourtext.Weareconfident thateventhoughwedonotlistindividuallytheirspecificcontributions,they knowhowmuchwearegratefultoeachoneofthem.ThankstoFrancesco Ademollo,LanierAnderson,PaolaBasso,MichaelBeeson,WolfgangCarl, VincenzoDeRisi,DanieldiLiscia,AlessandroGiordani,OrnaHarari, DesmondHogan,EberhardKnobloch,MariaRosaMassa,Richard McKirahan,BernardoMota,JohnMumma,MarcoPanza,FrancescoPaoli, CarlPosy,DavidRabouin,StephenRead,RoshdiRashed,PaulRusnock,Boaz FaradaySchuman,Sun-JooShin,RiccardoStrobino,PaulThom,Justin Vlasits,andRichardZach.

WearealsogratefultotwoanonymousreviewersforOxfordUniversity Pressforconstructivecriticismsthathaveimprovedourtext.Manythanks alsotooureditor,PeterMomtchiloff,forhavingsupportedourprojectfrom thestartandforhavingseenitthroughpublication.

Weknowthatmathematicianscarenomoreforlogicthanlogiciansfor mathematics.Thetwoeyesofexactsciencesaremathematicsandlogic: themathematicalsectputsoutthelogicaleye,thelogicalsectputsout themathematicaleye;eachbelievingthatitseesbetterwithoneeye thanwithtwo.Theconsequencesareludicrous.

Introduction

Inthisvolume,weattempttoreconstructthevicissitudesofaconvictionthat forcenturiesprevailedamonglogiciansandphilosophersinWesternculture. ItwastheconvictionthatalltheoremsofEuclid’ s Elements and,morein general,allmathematicaltheoremscanbeprovenbymeansofthetraditional Aristoteliansyllogism.

AsHenryMendellhasshown,Aristotleadoptedatwofoldattitudetoward thesyllogism:ontheonehand,hehadaquiteliberalideaofwhatasyllogistic inferenceis,attemptingtomodifyandtoadaptittoinferencesthatdonot fit itsform,while,ontheotherhand,heclaimedthatanykindofmathematical theoremcanbeprovenbymeansofasyllogismin Barbara.¹Otherwisesaid, Aristotleassumedtobe ‘syllogisms’ inferencesthatdonothavethecanonical formofasyllogismbut,atthesametime,hestatedthateveryvaliddemonstrationultimatelyrestsonthe ‘perfect’ first figuresyllogisms.

This ‘duplicity’ ofAristotle’sattitudetowardsyllogismismirroredbythe historyoflogicintheWesterntradition:mostlogiciansandphilosophersuntil thesecondhalfofthenineteenthcenturyheldthatthesyllogismof Aristotelianoriginwasthemaintoolfordemonstratingmathematicaltheorems;toperformtheirproofs,however,theyemployedcomplexarguments thatdonothaveacanonical ‘Aristotelian’ syllogisticform.Asyllogismmay appearatsomesteporotherofthedemonstration,butingeneralthislatter cannotbeconsidered ‘syllogistic’ inthetraditional,Aristoteliansense.

Onlyaverysmallnumberofauthorswereawareofthissituation,andthey reactedintwodifferentways:someofthemsimplyconsideredthesyllogismas inadequatetoprovemathematicaltheorems,whereasothersproposedto expandtheclassicalAristoteliansyllogismaddingrelationsandrelational termstoit.

Inthesecondhalfofthenineteenthcentury,AugustusDeMorgansubordinatedthetraditionalsyllogistictoalogicofrelationsthathehadbegunto develop.SinceDeMorgan,thesyllogism,thankstoCharlesSandersPeirceand GottlobFrege,lostsomeofitspeculiarappealamonglogiciansand ¹Mendell(1998). SyllogisticLogicandMathematicalProof.PaoloMancosuandMassimoMugnai,OxfordUniversityPress. ©PaoloMancosuandMassimoMugnai2023.DOI:10.1093/oso/9780198876922.003.0001

philosophersandbecameasmallpartofamoregeneraltheoryoflogic.Thus, ourstory findsitsnaturalendwithDeMorgan.Surely,fromAristotletoDe Morgan,thespanoftimeisquitebroad,butweaimtoaccountfora circumscribedtopic,atopicthatinvolves inDanielD.Merrill’swords—“a verydisturbinghistoricalpuzzle” :

Howcouldgenerationsoflogiciansclaimthatthesyllogismistheuniversal canonofvaliddeduction,whentheycouldnotbesurethatitsuf ficesforeven the firsttheoremofEuclid?Or,iftheyknewthattherearesomedifficultiesin doingthis,whydidtheynotseethesignificanceofthisfactandpursuethe matterfurther?²

Wecannotclaimtoprovideacompleteanswertothispuzzlebutwehopethat ourpresentationofthemajorpositionscharacterizingthisdebateandour interpretationsprovideatleastapartialanswertoit.However,somedeep questionsremain,forusaswellasforallotherinvestigatorswhohave addressedthematter,almostasbrutefactsthatdonotadmitofasatisfactory explanation.Forinstance,whydidnooneintheGreektraditionengagein detailwithsyllogisticreconstructionsofmathematicalproofsdespite Aristotle’sclaimthatallsuchproofswerereducibletosyllogisms?

Therelation,andthetension,betweenlogicandmathematicsweretobe highlysignificant.Forinstance,MichaelFriedmanhasclaimedthatKant’ s revolutionarydiscoveryofthesyntheticaprioriandthepostulationofapure intuitionwasaconsequenceofKant’srealizationthatmathematicalproof couldnotbeaccountedforusingthelogicofhistime,whichFriedman characterizedasmonadic first-orderlogic.³Inthisworkwewouldliketogo overwhatwemightcallthe “conditionsofpossibility” forwhatFriedman claimstohavebeenKant’smajormoveinthefoundationofhiscritical philosophy.Indeed,theemergenceofacarefulanalysisofmathematical proofsthroughthetoolsoflogicwasasurprisinglyslowprocess.

Aswehavesaid,averyimportantphaseofthisprocesswasthediscoveryof thelogicofrelations.The firstembryonicformofsuchalogicwasdeveloped duringthefourteenthcenturybyphilosopherslikeWilliamofOckhamand JohnBuridaninconnectiontotheirdiscussionofso-called ‘obliqueinferences, ’ thatis,inferencesinwhichobliquetermsoccur.Thedistinction between oblique and right termswasgrammaticalandhaditsrootsinthe ²Merrill(1990:11).³Friedman(1992);wediscussFriedman’sinterpretationinSection6.3.

worksoftheLatingrammariansofantiquity.⁴ A rightterm (terminusrectus) wassimplyaterminthenominativecase(forexample: Caesar),whereasan obliqueterm (terminusobliquus)wasaterminanyothercase,differentfrom nominative(forexample: Caesaris ‘ofCaesar’).Medievallogicianswereaware thatobliquetermsimpliedareferencetorelationsandattemptedtodevelopa treatmentofobliquetermsinsidetheframeworkoftraditionalsyllogism.⁵ Giventheirpoorinterestinmathematics,however,theydidnotassociate obliqueinferenceswiththeinferencesthatwereusuallycarriedoutbymathematicianswhenprovingtheorems.

ItisonlywiththeworksofJoachimJungiusandJohannesVagetius,inthe seventeenthcentury,thattwoimportantfeaturesofobliqueinferencesemerge: (1)theyareforthemostpartnotreducibletosyllogisms;(2)theyarenecessary forprovingmathematicaltheorems.EventhoughitisquitedifficulttodetermineexactlytheinfluenceandthediffusionofJungius’ andVagetius’ theses, thereisnodoubtthattheywereaclearsymptomofasortofuneasiness towardsthetraditionalsyllogismofAristotelianorigin.

Intheseventeenthcentury,evenGottfriedWilhelmLeibnizandtheSpanish philosopherJuanCaramuelLobkowitz(1606–1682)tackledtheproblemof oblique(relational)inferences.Leibnizhadtheopportunityoflookingat Jungius’ papersanddiscussedwithVagetiussomeissuesconcerningrelational inferences.Leibnizwasawareofthenon-syllogisticnatureofcertaininferencescontainingrelations;andhebelievedthattheyshouldbe ‘demonstrated’ onthebasisofa ‘superior’ logic,thatis,alogicmoregeneralthanthatcentered onthesyllogism.

Caramuel,bycontrast,wasanenthusiasticsupporterofobliqueinferences, which,accordingtohim,constitutedthegreatestpartofourordinaryinferencesandattemptedeventodevelopa logicofobliqueterms (logicaobliqua). Thislogic,however,wasconceivedinsidethetraditionalframeworkofthe doctrineofsyllogism,whichintheendcameoutprofoundlymodified.To integraterelationsandrelationaltermsintothetraditionalsyllogistic figures, Caramuelchangedthemeaningoftheordinary copula,thusgivingrisetoa theory,whichstronglyresemblesthetheoryofthe ‘generalcopula’ proposed

⁴ Varro(1910:8,49);Quintilianus(1970:1.6.25).

⁵ InthemedievalcommentarytoAristotle’ s PriorAnalytics,writtenbyRobertKilwardby(also knownasRobertusAnglicus)inthethirteenthcentury,we findachapteronobliqueinferences(see Kilwardby2015:878–91).AndwhileKilwardby(2015:885)discussesdoubtsasto “whetherornotitis possibletosyllogizefromobliqueterms” heresolvesthembyprovidingargumentstotheeffectthat obliqueinferencescanbeaccommodatedwithinthetheoryofsyllogism.Thediscussionofoblique termsinsyllogisticlogic findsitsrootsinAristotle’streatmentofthematterin PriorAnalytics I.36–I.37.

byDeMorganinthesecondhalfofthenineteenthcentury.⁶ Yet,eventhough Caramuelseemstocomeveryclosetodevelopingthebeginningsofalogicof relations,hecontentshimselfwithamassingheterogeneousexamplesof ‘syllogisticinferences’ thatcontainrelations,withoutmakinganyattemptto elaborateatheorywithsomedegreeofgenerality.

Thequestionofinferencescontainingrelationsresurfaceswithsomeforce inthesecondhalfofthenineteenthcenturyintheUnitedKingdom,a discussionforeshadowedintheworkoftheScottishphilosopherThomas Reid(1710–1796).Reidclearlystatesthatsomerelationalinferencescannot bereducedtosyllogismsandthatthetraditionalsyllogisticdoctrineisunfitto representmathematicalproofs.Reid’sstatementssetoffadiscussioninwhich AugustusDeMorganwasinvolved.WhereasVagetiusrecognizesthenonsyllogisticnatureofsomerelationalinferences,insistingatthesametimeon thenecessityofemployingtheminamathematicalproof together withthe traditionalsyllogisticinferences,ThomasReidconcludesfromthenonsyllogisticnatureofthoseinferencesthatthesyllogismisinadequateto provemathematicaltheorems.WithDeMorgan,however,alogicofrelations inapropersensebeginstobebuilt.However,wewillshowthatthiswasnot quitetheendofthestoryandthattheconceptualholdofthethesisthatallof mathematicscouldbecapturedsyllogisticallywasinsomecasesstillexerting itsinfluenceinthetwentiethcentury.

Ourtextisdividedintoeightchaptersandaconclusion.Chapter1considerstherelationship,suchasitwas,betweenlogicandmathematicsin antiquityandthemedievalperiod.Chapter2introducesthetreatmentof inferencescontainingobliquetermsby,amongothers,JohnBuridanand WilliamofOckham,twoofthemosteminentlogiciansactiveinthefourteenth century.Chapter3concernstheemergenceintheRenaissanceofamore carefulanalysisofmathematical(Euclidean)proofswiththetoolsofsyllogistic logic.WecoverinthissectionPiccolomini’ s firstdetailedsyllogizationofa geometricalproofaswellassimilarsyllogizationsbyotherRenaissanceand seventeenth-centuryauthors.Chapter4goesbacktotheproblemofoblique inferencesandinvestigatesthetreatmentofobliquitiesinseveralauthors activeintheseventeenthcentury.Chapter5isdevotedtotheso-called ‘ preKantian’ philosophyinGermany,includingAndreasRüdigerandChristian Wolff.Chapter6dealswithKant.Chapter7isdevotedtoBolzanoand, finally, Chapter8iscenteredonDeMorgan’swork.

⁶ Cf.,Merrill(1990:67–71);Dvoràk(2008:658–9).

Caveatlector:Itiswellknownthatdefiningwhatexactlyisasyllogismisa delicatequestionthatposesdeepphilologicalandlogicalproblems(see,e.g., Thom1981;Smiley1973;Lear1986;Corcoran1972,1974,andreferences thereincontained).⁷ Inourcase,thecomplexitiesaremultipliedbythevariety ofauthorswhorefertothesyllogisminvaryingdegreesofprecision. Fortunately,forourpurposeswewillrarelyneedtoengageinareconstruction ofthepreciseconceptionofsyllogismentertainedbyanyspecificauthorunder discussion(moreoftenthannottheauthorswediscussgivenothorough accountofwhattheirconceptionofasyllogismis).Furthermore,whilewe havedoneourbesttointroduceandexplainconceptsthatmightbeunfamiliar tothereader,wemustpresupposethatthereaderhasalreadysomeacquaintancewithAristoteliansyllogismsandwithEuclid’sstyleofproofinthe Elements.Finally,ourhistorycoversagoodnumberofwell-knownauthors (Aristotle,Leibniz,Kant,Bolzano)butalsoseverallesser-known figures.Lest thereaderbeconfusedbytheselection,ourcriteriaofinclusionareasfollows: wediscussallthoseauthorswhohavemadeacontributiontothedebateof whethermathematicalproofscouldbesyllogized.Thosewhodidnotdiscuss thetopicarenotincluded.Amongthosewhodiddiscussit,weemphasizethe oneswhomadeinnovativeconceptualmovesandgivelessspacetothosewho simplyrepeatedpointsthathadalreadybeenmadebyotherscholarsbefore them.Thisisthereasonwhysomeofthe “bigandfamous” inthehistoryand philosophyofmathematicsdonotappearandother,insomecaseslesswellknown,characterstakecenterstage.

⁷ Thomcharacterizesthemostfundamentalquestionaboutthesyllogismas “Whatisit?” (Thom 1981:11).ForarecenthistoryofconceptionsofsyllogismfromAvicennatoHegel,seeSgarbiandCosci (2018).ForageneralexpositionofAristotle’stheoryofsyllogism,seeCrivelli(2012).

AristotelianSyllogismandMathematics

inAntiquityandtheMedievalPeriod

AmongthemostoutstandingachievementsofGreekthoughtwereAristotle’ s inventionoflogicasadiscipline,ascodifiedinthe Organon,andthedevelopmentofproofinmathematics,asexemplifiedinEuclid’ s Elements andlater works.Andyet,itcomesassomewhatofasurprisethatwhenonelooks carefullyattherelationbetweenlogicaldemonstrationandmathematical proofintheAncientworld(andweshouldalsoaddthemedievalcontributions),theresultsaredismal.

OneofthereasonswhythisissurprisingisthattherearemanyprogrammaticstatementsinAristotle’ s Organon thatprimafacieindicateaclose analysisofmathematicaldemonstrationsonthepartofAristotleandhis successors.Barnesaptlysummarizesthesituation:

InhisElementsEuclid firstsetsdowncertainprimarytruthsoraxiomsand thendeducesfromthemanumberofsecondarytruthsortheorems.Before everEuclidwrote,Aristotlehaddescribedandcommendedthatrigorous conceptionofscienceforwhichtheElementswastoprovideaperennial paradigm.Allsciences,inAristotle’sview,oughttobepresentedasaxiomaticdeductivesystems – thatisamainmessageofthe PosteriorAnalytics. Andthedeductionswhichderivethetheoremsofanysciencefromits axiomsmustbesyllogisms – thatisthemainmessageofthe PriorAnalytics.¹

ConsiderforinstancewhatAristotletellsusinthe PosteriorAnalytics:

Themathematicalsciencescarryouttheirdemonstrationsthroughthis figure[the first figure],e.g.arithmetic,geometry,optics – andingeneral thosescienceswhichmakeenquiryaboutthecause. ¹Barnes(2007:360).

8

Thepuzzlegeneratedbythisclaimisthatitisempiricallyfalse.Muchofthe secondaryliterature(Barnes,Mendell,etc.)haspainstakinglytriedtoaccount forsuchclaimsbuttheseattemptsdonotaffectthebasicfactthatstrikesthe readerofGreeklogicaltexts,namelythatalmostnoattentionisdevotedto mathematicalproofperse.Whenmathematicalexamplesarebroughtintoplay, theyareusuallyinstrumentalindiscussingspecificissuesthatdonotquestion thegeneralassumptionthatanykindofvalidarguments,includingmathematicalproofs,are,orcanberendered,syllogistically.Typicalinthisrespectis

Aristotle’sdiscussionin PriorAnalytics I.24ofamathematicalexampletothe effectthattheanglesadjacenttothebaseofanisoscelestriangleareequal.²The example,inwhichAristotleinvokesinstancesofwhatinEuclidwillbecomea commonnotionregulatingidentity,³isinstrumentalinshowingthatinevery prooftheremustbeatleastoneuniversalpremise.However,norealattentionis devotedtotheinternalstructureofthemathematicalproof.Theexampleis interestingbecausebothAlexanderofAphrodisiasandPhiloponusdiscussit too.⁴ Andbothusetheexampletoemphasizethatthepropersyllogistic reconstructionofthemathematicalproofrequiresauniversalaxiom(concerningidentity)whileatthesametimedisplayingthat,forthem,thesyllogistic natureofthemathematicalproofisadogmathatcannotbequestioned.

ThesituationisthesamewhenonelooksatKilwardby’scommentaryon PriorAnalytics wherethematterisdiscussedin Lectio 29.⁵ Kilwardbyisvery explicitaboutthesyllogisticstepsinvolvedinthereconstructionofthetheoreminquestion:

Thethesistoprove,therefore,isthatE,F(whicharetheanglestothebase) areequal,inthefollowingway:

²ForusesofmathematicsinAristotle,seeHeath(1949)andMueller(1974).

³Namely,equalthingsremainwhenequalthingsaresubtractedfromequals.

⁴ SeeAlexanderofAphrodisias(2006:16–17,47–8)andPhiloponus(1905:41b13pages253,line26, to254,line23).WediscussPhiloponusinChapter3.

⁵ Kilwardby(2015:677–93).Theexpression “anglesofasegment[anguliinscissionis]” isexplained byKilwardbyatthebeginningofLectio29.ItreferstotheanglesCandDinthediagram.Theanglesof semicirclereferredtointheproofarethecurvilinearanglesthatwecoulddenotebyCABandDBA (KilwardbyusesACandBD,respectively,toindicatethem).

Allanglesofsemicirclesareequalangles; ACandBDareanglesofsemicircles; So,anglesACandBDareequal.

Letanothersyllogismbeformedasfollows: Allanglesofasegment[anguliinscissionis]areequal; ButtheanglesCandDareanglesofasegment; So,theyareequal.

Thenletathirdsyllogismbeformedasfollows:

Fromallequals,ifequalsaresubtracted,theremainderswillbeequal; ButtheanglesACandBDareequal,likewisetheanglesC[and]D(ashas beenshown);

So,whentheanglesCandDaresubtractedfromtheanglesACandBD, theremainderswillbeequal.

Buttheremaindersaretheanglesonthebase,viz.EandF;hencethe anglesonthebaseareequal.⁶

However,thesyllogisticreconstruction,whiledetailed,onlyputsinmore formalgarbanddoesnotquestionwhatwasassumedallalong.Thesyllogistic proofisusedonlyasabridgetoalengthydiscussionoftheclaimthata universalpremisemustbepresentineverysyllogismandconsequences thereof.WeshouldpointoutthatKilwardby’streatmentisunusuallydetailed inpresentingthesyllogisticformulationofthetheorem.

WehavebeendiscussingAristotle’slogictheoryascenteredonsyllogisms. Butwhatexactlywasincludedinsuchtheory?Herewehavetowarnthereader thatsyllogismis “saidinmanyways.”⁷ InAristotlewe find,tostartwith,avery broadmeaningofsyllogismaccordingtowhichasyllogismissimplya deductivelyvalidargument.⁸ Thereis,however,amorerestrictednotion thatiscapturedbyBarnesasfollows:

Aristotle’spredicativesyllogisticis,orcanbereconstructedas,anaxiomatizeddeductivesystemtheaxioms(orquasi-axioms)ofwhicharetwo

⁶ Kilwardby(2015:680–3). ⁷ Seeour Caveatlector attheendoftheIntroduction.

⁸ Thisverybroadmeaningofsyllogismisfoundinthedefinitionofsyllogismgivenin Topics I.1and PriorAnalytics I.1.Forinstance,in PriorAnalytics I.1weread: “Asyllogismisadiscourseinwhich, certainthingsbeingstated,somethingotherthanwhatisstatedfollowsofnecessityfromtheirbeing so. ” Whilequitebroad,thisdefinitionofsyllogismismorerestrictivethanthatofa “logicallyvalid argument” fromacontemporarypointofview.Forinstance,circulararguments(i.e.,arguments containingapremiseidenticaltotheconclusion)orargumentswithcontradictorypremisesseemto beexcludedbyAristotleasbeingsyllogistic.WethankFrancescoAdemolloforanenlighteningconversationonthismatter.

syllogisticforms,certainprinciplesofconversionandofsubordination,a principleofreductiontotheimpossible,andaruleofexpositionorecthesis. Andthetheorems(orquasi-theorems)arecertainderivedprinciplesof conversionandsubordination – andaninfinitenumberofsyllogisms.⁹

Thedogmawehavereferredto,andwhichhasitsrootsinAristotle,isthat everysyllogisminthebroadersenseisreducibletoasyllogisminthemore restrictedsense.¹⁰ Evenwithinthemorerestrictedsense,thereisquiteabitof freedomindeterminingwhatAristotleacceptsasacategoricalstatement,what typeoftermsmayappearinthesyllogism,howthecopula ‘belonging’ oughtto beinterpreted,andsoon.Hence,thealternativeattemptstocaptureexactly whattheprecisedetailsofthetheoryare.¹¹

Oneofthefewvoices¹²thatseemstostandinoppositiontothisstateof thingsisthatofGalenwhointroducesanewclassofsyllogisms,called relationalsyllogisms.Thesesyllogismsdiffer,accordingtohim,fromcategoricalandfromhypotheticalsyllogisms:

Thereisalsoanother,third,speciesofsyllogismusefulforproofs,whichIsay comeaboutinvirtueofsomethingrelational,whiletheAristoteliansare obligedtonumberthemamongthepredicativesyllogisms.¹³

Therelationalsyllogismsarecharacterizedbythefactthatanewaxiomis neededtoaccountfortheirvalidityor,asGalensays,relationalsyllogismsare ‘inaccordancewithanaxiom.’¹⁴ ItispossiblethatGalenisherereacting toAlexander’sattempttoreducetheinferentialpatternwithidentitypresent

⁹ Barnes(2007:367).

¹

⁰ Aristotleoffersaproofoftheclaimat PriorAnalytics I.25,41b36–42a32andI.23,40b18–41a21. Thisthesisis(implicitlyorexplicitly)opposedbyallthosethinkerswhoclaimthattherearenonsyllogisticinferences.Wewillencountermanyoftheminourwork,includingJungius,Leibniz, Rüdiger,Bolzano,andDeMorgan.SeethediscussionoftheAristotelianargumentwegivein Chapter7onBolzano.

¹¹Mueller(1974)refersinthisconnectiontoAristotle’ s “ vagueness. ” Aclassicalattempttocometo termswiththis “ vagueness ” isMendell(1998).

¹²Wedonotsay “theonlyvoice” forone findsintheMegaricandStoicschoolsthedoctrineofthe lógoiamethódosperaínontes,whichareenthymematicargumentsconsideredtobenotreducibletothe theoryofsyllogism.Forapresentationofthisdebate,seeBarnes(2012:104–11).

¹³Galen(1964:xvi1).

¹

⁴ Itispossiblethatthischaracterization,accordingtoGalen,mighthaveabroaderapplicationthan justforrelationalsyllogisms.Onthistopic,seeBarnes(2007:419–47)whoseemstoconcludethat Galenhadprogressivelyextendedtheapplicationofthecriteriontoclaimthatallsyllogismsdependfor theirvalidityonauniversalaxiom. 10

inEuclidI.1¹⁵ totherealmofcategoricalsyllogism.¹⁶ Galenemphasizedthe importanceofsuchrelationalsyllogismsto “arithmeticiansandcalculators.” Healsopresentsageometricalinstanceofrelationalsyllogism:

Giventhatthereisthisuniversalaxiom,whichhasitswarrantyfromitself –namely,itemsequaltothesameitemarealsoequaltooneanother – itis possibletosyllogizeandproveinthewayinwhichEuclidproducedthe proofinhis firsttheoremwhereheshowsthatthesidesofthetriangleare equal;forsinceitemsequaltothesameitemarealsoequaltooneanother, andithasbeenshownthatthe firstandthesecondareequaltothethird,the firstwillbeequaltothesecond.¹⁷

Galenstandsoutinhisrecognitionthatsomethingspecialisgoingonwith inferencesthatinvolverelationssuchas ‘equalto,’‘largerthan,’ andsoon.Yet, thisattentiontotheworkingsofspecificmathematicalinferentialpatterns (involving ‘identity,’‘greaterthan,’‘smallerthan,’ andotherrelations)isasfar asGalenventuresandnologicofrelationsemergesfromhiswork.

Thus,withthepossibleexceptionofGalen,weseenoreasontodisagree withMuellerwhosummarizestherelationbetweenAristoteliansyllogistics andmathematicalproofintheGreeksasfollows:

Aristotleseems,then,tohavehadalargelyaprioriconceptionoftherelation betweenhislogicandmathematicalproof.Hemayhavetakentheformulationofmathematicaltheoremsintoaccountintryingtojustifyhisestimation ofthesignificanceofthecategoricalpropositionindemonstrativescience, buthisnotionofthecategoricalpropositionwassobroadthatvirtuallyany generalstatementwouldsatisfyit.Ontheotherhand,Aristotledoesnot seemtohavelookedatmathematicalproofinanydetail,atleastasfarasits logicisconcerned.Herecognizessomecommonfeaturesofmathematical

¹⁵ Wesay “possible” becausethequestionofdatationconcerningGalen’sandAlexander’slivesis debated;someclaimthattheywerenearcontemporarieswhileothersclaimthatGalenlivedbefore Alexanderbyoneortwogenerations,inwhichcaseitishardertoarguethatGalenisreactingto Alexander.WewilldiscussEuclidI.1atlengthinChapter3.Itistheproblemofconstructingan equilateraltriangleonanygivensegment.

¹

⁶ PhiloponusisnodifferentthanAlexanderingivingprimacytocategoricalsyllogism(seeMueller 1974andPhiloponus1905:41b13pages253,line26to254,line23).BothAlexanderandPhiloponus pointoutthatanadditionalaxiomisneededtocompletethesyllogismbutthedifferencewithGalenis thattheytrytoaccountforthemathematicalinferencewithincategoricalsyllogism.Accordingto Mueller(1974),Stoicreflectiononlogicseemsmostlyindependentofananalysisofmathematics. However,PosidoniusmighthavebeenasourceforGalen’snotionofrelationalsyllogism.SeeBarnes (2007:420–33)andGalen(1964:xviii.8).

¹⁷ Galen(1964:xvi.6).

12

proof,e.g.theuseofreductioadabsurdumandtherelianceonuniversal assumptionsbutheisapparentlycontenttorelyontheabstractargumentof I.23toestablishtheadequacyofsyllogisticformathematics.Hisperipatetic successorsdonotseemtohavegonemuchbeyondhimeitherinlogicorin thelogicalanalysisofmathematicalproof.¹ ⁸

Thesituationwasnottoimproveinthemedievalperiod.Itisactuallynoteasy to findexamplesofmedievalthinkers(includingthoseactiveintheIslamic world)whoexplicitlydiscusstheissueofwhethermathematicalproofscanbe syllogized.

ThemostimportantexamplewehaveofsuchadiscussionintheIslamic worldcomesfromAvicenna’ s TreatiseonLogic,thatis,BookIofthePersian treatise Philosophyfor ‘Alâ’ al-Dawla (Dânishnamah-yiAlâ’î;writtenaround 1021–37 ).¹⁹ Theexamplewasreproducedalmostverbatiminaworkby al-Ghazālī (theLatinAlgazel).²⁰ Sincethelatetwelfthcentury,aworkby AlgazelcirculatedintheLatinWest,oftenwiththetitle Summatheoricae philosophiae (or,later, LogicaetphilosophiaAlgazelis).Thebook,describedas “aprimerontheAristoteliantradition,”²¹wastranslatedbyDominicus Gundissalinusinthethirdquarterofthetwelfthcenturyandbecamewell knownintheLatinMiddleAges.²²The Summatheoricaephilosophiae wasa translationofal-Ghazālī’ s TheDoctrinesofthePhilosophers (Maqâ : sidal-falâsifa). ThetextwasalooselyadaptedArabictranslationofAvicenna’sPersianwork, Philosophyfor ‘Alâ’ al-Dawla (Dânishnamah-yiAlâ’î).Moreprecisely,itwasa compilationstemmingfromthepartson logic,metaphysics,andphysicsin Avicenna’ s Philosophyfor ‘Alâ’ al-Dawla plusadditionalmaterialfromother worksbyAvicenna.

Inthediscussionof “compound” syllogisms,AvicennaandAlgazelanalyze the firstpropositionofBookIofEuclid’ s Elements andreconstructitsdemonstrationasstructuredintofoursyllogisms.Wereporttheentiresectionasit appearsinAlgazel’sLogic(omittingthevariants):

Wehaveanexampleofacompoundargumentationinthe first figurein Euclid.Ifinfactoonewantstoconstructanequilateraltriangleonagiven

¹

¹

⁸ Mueller(1974:56–7).

⁹ SeeAvicenna(1971:36–7);cf.,Strobino(2021:76,note25),where,inadditiontoAvicenna, Bahmanyārb.al-Marzubānisalsomentioned.

²

⁰ SeeLohr(1965:271–2).²¹Minnema(2014:158). ²²SeeGriffel(2020)andJanssens(2020).

segment ab,andonewantstodemonstratethatthetriangleisequilateral, oneproceedsasfollows.

Takethepoint a ascenteronwhichone fixesafootofthecompass;then openthecompassuntilthepoint b anddrawacirclewithcenter a.Similarly, fixafootofthecompasson b andthenextendtheotherfoottothepoint a anddrawacircle.Thetwocirclesarethusequalbecausetheyareonthesame length[theyhaveequalradius]andintersectonpoint g.Fromthispoint drawasegmentuntilpoint a,whichyields ga.Andsimilarly,from g draw anothersegmentuntilpoint a,whichyields ga.Andsimilarly,fromthepoint g drawanothersegmentuntilpoint b,whichyields gb.Thenthetriangle containedwithinthethreepoints abg isequilateral.

ab g

Thisisprovedasfollows.Thetwosegments ab and ag areequalbecausethey originatefromthecenterofthesamecircleandextendtothecircumferenceof thecircle.Similarlythetwosegments ab and bg areequalforthesamereason. Butthesegments ag and bg areequalbecausetheyareequaltooneandthe samesegment,namely ab.Onethenconcludesthatthetriangleisequilateral.

Oneformerlyintroducedpropositionsinexactlythisway.If,however, theyarebroughtbacktotheirtrueorder,theconclusionwillonlyfollow fromfoursyllogisms,eachoneofwhichisformedbytwopropositions:

(1)The firstofthesesyllogismsisthis:twosegments ab and ag proceed fromthecentertothecircumferenceofthesamecircle.Butallthe segmentsthatproceedfromthecentertothecircumferenceofthe samecircleareequal.Thusthesegments ab and ag areequal.

(2)Thesecondisthefollowing:twosegments ab and bg thatextendfrom thecenterofthesamecircumferenceandextendtothecircumference are,forthesamereason,alsoequal.

(3)Thethirdisthis:twosegments ag and bg areequaltothesame segment,namely ab.Butanytwosegmentsthatareequaltothe samethingareequaltooneanother.Thus,thetwosegments ag and bg areequaltooneanother.

(4)Thefourthisthis:the figure abg iscontainedwithinthreeequal segments.Butevery figurecontainedwithinthreeequalsegmentsis triangularandequilateral.Thus,the figure abg constructedonthe segment ab isanequilateraltriangle. Thisisthetrueorderofdemonstrationbuttheauthorintendedtoleaveout somepropositionsbecausetheyareobvious.Thus,payattentiontothisfact. Thisiswhatoneneedstosayabouttheformofsyllogism.²³

ThisisthemostexplicitsyllogisticreconstructionofaEuclideantheorem beforeAlessandroPiccolomini(1508–1579)providedonein1547andwewill postponeananalysisofthissyllogisticreconstructionofEuclidI.1untilwe discussPiccolomini.Asthe LogicaAlgazelis wasatextwellknowntotheLatin MiddleAges,itisnotimpossiblethatitmighthaveinfluencedPiccolomini. But,surprisingly,itdoesnotseemtohavemuchinfluenceddiscussionsinthe medievalLatinWest,forexplicitdiscussionsofthepossibilityofsyllogizing Euclid’sproofsaredifficultto find.Twointerestingmentionsofsyllogized mathematicalproofsintheLatinWestappearinAlbertusMagnusandRobert Kilwardby,bothactiveinthethirteenthcentury.²⁴

WehavealreadymentionedKilwardby’ssyllogizedpresentationofthe Aristotelianexamplesconcerningtheequalityoftheanglesatthebasisofan isoscelestriangle.KilwardbyalsodiscussesAristotle’sbriefmentionofthe proofoftheincommensurabilityofthesidewiththediagonalofasquareasan exampleofsyllogismthroughtheimpossible(theoriginalpassagein Prior Analytics isI.23,41a26–30).InhiscommentaryoftheAristoteliantext, Kilwardbyargues,expandingonAristotle’sclaim,thatifthesideandthe diagonalofthesquarewerecommensurablethenitwouldfollow “syllogisticallythatanevennumberandanoddnumberareequal.” Hethengoesonto giveasyllogisticreconstructionoftheproof.²⁵ Theexampleisalsodiscussed byAlexander²⁶ andPhiloponus.²⁷ Wewillomitthedetailsastheydonotadd muchtowhatwehavealreadysingledoutastheattitudetowardthe “Aristoteliandogma” thatisreflectedinthem.

²³Lohr(1965:271–2).

²⁴ WethankDanieldiLisciaandMarcoPanza,respectively,forhavingbroughtthepassagesby AlbertusMagnusandRobertKilwardbytoourattention.

²⁵ TheproofitselfismarredbyamistakemadebyKilwardbyinestablishingoneofhispremises. However,ifthepremiseisallowedasestablished,thenthesyllogisticreconstructioniscorrect(see Panza2018).

²⁶ Alexander(2006:38–9).²⁷ Philoponus(1905:41b13pages253,line26to254,line23).

AlbertusMagnustouchesontheissueofsyllogizedmathematicalproofsin hiscommentarytoEuclid’ s Elements,whichhasonlyrecentlybeentranslated intoEnglish.AttheendoftheproofofPropositionI.1hewrites:

Itmaythereforebesyllogizedthus:Everyrectilineartrianglehavingsides equaltolinesgoingoutfromthecentertothesamecircumferenceis equilateral.ButtriangleABChasbeenconstituteduponthegivenlineAB havingetc.;thereforeitisequilateral.²⁸

Andafterprovidinganalternativeproofofthesamepropositiongivenby al-Nayrizihemakesageneralclaim: “itis,moreover,easytoputalldemonstrationsofthissortintotheformofasyllogism.”²⁹ WhileAlbertus’ position fallssquarelywithinthetraditionalassumptionthatmathematicalproofs couldbereducedtosyllogisms,whatisinterestingisthatitismoredifficult to findsuchclaimsincommentariesonEuclid’ s Elements thanitisto find themincommentariestothe Prior and PosteriorAnalytics

²⁸ AlbertusMagnus(2003:34).

²⁹ AlbertusMagnus(2003:35).EvenRobertGrosseteste,inhis CommentarytotheSecondAnalytics claimsthatthe firstproblemofEuclid’ s Elements canbeprovenbymeansof fivesyllogisms (Grosseteste1981:95).

Turn static files into dynamic content formats.

Create a flipbook