Interval methods for uncertain power system analysis alfredo vaccaro all chapter instant download

Page 1


Interval Methods for Uncertain Power System Analysis Alfredo

Vaccaro

Visit to download the full and correct content document: https://ebookmass.com/product/interval-methods-for-uncertain-power-system-analysi s-alfredo-vaccaro/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Affine Arithmetic-Based Methods for Uncertain Power System Analysis Alfredo Vaccaro

https://ebookmass.com/product/affine-arithmetic-based-methodsfor-uncertain-power-system-analysis-alfredo-vaccaro/

Graph Database and Graph Computing for Power System Analysis

Renchang Dai

https://ebookmass.com/product/graph-database-and-graph-computingfor-power-system-analysis-renchang-dai/

Power System Analysis and Design 6th Edition J. Duncan

Glover

https://ebookmass.com/product/power-system-analysis-anddesign-6th-edition-j-duncan-glover/

Energy Storage for Modern Power System Operations

Sandeep Dhundhara

https://ebookmass.com/product/energy-storage-for-modern-powersystem-operations-sandeep-dhundhara/

https://ebookmass.com/product/power-system-protection-2ndedition/

Statistical Methods for Survival Data Analysis 3rd Edition Lee

https://ebookmass.com/product/statistical-methods-for-survivaldata-analysis-3rd-edition-lee/

System on Chip Interfaces for Low Power Design 1st Edition Mishra

https://ebookmass.com/product/system-on-chip-interfaces-for-lowpower-design-1st-edition-mishra/

Intelligent Coordinated Control of Complex Uncertain Systems for Power Distribution and Network Reliability 1st Edition Meng Xiangping

https://ebookmass.com/product/intelligent-coordinated-control-ofcomplex-uncertain-systems-for-power-distribution-and-networkreliability-1st-edition-meng-xiangping/

Solar Photovoltaic System Modelling and Analysis: Design and Estimation (River Publishers Series in Power) 1st Edition Mariprasath

https://ebookmass.com/product/solar-photovoltaic-systemmodelling-and-analysis-design-and-estimation-river-publishersseries-in-power-1st-edition-mariprasath/

IntervalMethodsforUncertainPower

SystemAnalysis

IEEEPress

445HoesLane

Piscataway,NJ08854

IEEEPressEditorialBoard

SarahSpurgeon, EditorinChief

JónAtliBenediktssonBehzadRazaviJeffreyReed

AnjanBoseJimLykeDiomidisSpinellis

JamesDuncanHaiLiAdamDrobot

AminMoenessBrianJohnsonTomRobertazzi DesineniSubbaramNaiduAhmetMuratTekalp

IntervalMethodsforUncertainPower

SystemAnalysis

AlfredoVaccaro

UniversityofSannio

Italy

Copyright©2023byTheInstituteofElectricalandElectronicsEngineers,Inc. Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,without eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe appropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers, MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requeststo thePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley& Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat http://www.wiley.com/go/permission.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley& Sons,Inc.and/oritsaffiliatesintheUnitedStatesandothercountriesandmaynotbeused withoutwrittenpermission.Allothertrademarksarethepropertyoftheirrespectiveowners. JohnWiley&Sons,Inc.isnotassociatedwithanyproductorvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechanged ordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublisher norauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbut notlimitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,please contactourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidethe UnitedStatesat(317)572-3993orfax(317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsin printmaynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts, visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationData:

Names:Vaccaro,Alfredo,author.|JohnWiley&Sons,publisher.

Title:Intervalmethodsforuncertainpowersystemanalysis/Alfredo Vaccaro.

Description:Hoboken,NewJersey:Wiley-IEEEPress,[2023]|Includes index.

Identifiers:LCCN2023014418(print)|LCCN2023014419(ebook)|ISBN 9781119855040(cloth)|ISBN9781119855057(adobepdf)|ISBN 9781119855064(epub)

Subjects:LCSH:Electricpowersystems.|Electricpower systems–Mathematicalmodels.|Electricpowersystems–Reliability.| Systemanalysis.

Classification:LCCTK1005.V252023(print)|LCCTK1005(ebook)|DDC 621.3101/5118–dc23/eng/20230506

LCrecordavailableathttps://lccn.loc.gov/2023014418

LCebookrecordavailableathttps://lccn.loc.gov/2023014419

CoverDesign:Wiley

CoverImage:©Sukpaiboonwat/Shutterstock

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

Tomyfamily

Contents

AbouttheAuthor ix

Preface xi

Acknowledgments xiii

Acronyms xv

Introduction 1

1IntroductiontoReliableComputing 3

1.1ElementsofReliableComputing 4

1.2IntervalAnalysis 7

1.3Interval-BasedOperators 8

1.4IntervalExtensionsofElementaryFunctions 9

1.5SolvingSystemsofLinearIntervalEquations 11

1.6FindingZerosofNonlinearEquations 15

1.7SolutionofSystemsofNonlinearIntervalEquations 16

1.8TheOverestimationProblem 20

1.9AffineArithmetic 22

1.9.1ConversionBetweenAAandIA 25

1.9.2AA-BasedOperators 25

1.9.3ChebyshevApproximationofUnivariateNonaffineFunctions 28

1.9.4MultiplicationofAffineForms 31

1.9.5EffectsofRecursiveSolutionSchemes 35

1.10IntegratingAAandIA 35

2UncertainPowerFlowAnalysis 37

2.1SourcesofUncertaintiesinPowerFlowAnalysis 39

2.2SolvingUncertainLinearizedPowerFlowEquations 41

2.3SolvingUncertainPowerFlowEquations 46

2.3.1Optimization-BasedMethod 48

2.3.2DomainContractionMethod 52

3UncertainOptimalPowerFlowAnalysis 59

3.1RangeAnalysis-BasedSolution 61

3.1.1OptimalEconomicDispatch 63

3.1.2ReactivePowerDispatch 66

3.2AA-BasedSolution 70

4UncertainMarkovChainAnalysis 75

4.1MathematicalPreliminaries 77

4.2EffectsofDataUncertainties 78

4.3MatrixNotation 79

4.4AA-BasedUncertainAnalysis 80

4.5ApplicationExamples 83

4.5.1CaseStudy1:GridResilienceAnalysis 83

4.5.2CaseStudy2:EnergyStorageModel 84

4.5.3Summary 86

5Small-SignalStabilityAnalysisofUncertainPower Systems 87

5.1ProblemFormulation 89

5.2TheIntervalEigenvalueProblem 90

5.3Applications 92

5.3.1CaseStudy1 92

5.3.2CaseStudy2 93

6UncertainPowerComponentsThermalAnalysis 95

6.1ThermalRatingAssessmentofOverheadLines 96

6.1.1SourcesofDataUncertainties 98

6.1.2AA-BasedThermalRatingAssessment 99

6.1.3ApplicationExamples 100

6.2ThermalRatingAssessmentofPowerCables 104

6.2.1ThermalModelingofPowerCables 105

6.2.2SourcesofDataUncertainties 107

6.2.3ToleranceAnalysisofCableThermalDynamicsbyIA 108

6.2.4ApplicationExamples 109

References 112 Index 119

AbouttheAuthor

AlfredoVaccaro,PhD,isafullprofessorofelectricpowersystemsatthe DepartmentofEngineeringofUniversityofSannio.Heistheeditor-in-chiefof SmartGridsandSustainableEnergy,SpringerNatureandassociateeditor ofIEEEtrans.onSmartGrids,IEEEtrans.onPowerSystems,andIEEEPower EngineeringLetters.

Preface

Thisbooksummarizesthemainresultsofmyresearchactivitiesinthefieldof uncertainpowersystemanalysisbyintervalmethods.

Istartedworkingonthisinterestingandchallengingissueinearly2000, inspiredbythepapersofProf.FernandoAlvaradoabouttheapplicationof intervalarithmeticinuncertainpowerflowanalysis.Thefirstcontributionswere focusedonmitigatingtheeffectsofthe“dependencyproblem”and“wrapping effect”inintervalanalysis,whichcanreducethevalueoftheresultsbyoverestimatingtheboundsofthepowerflowsolutions.Thisoverestimationproblem hasbeenobservedwhensolvingmanyconventionalpowersystemoperation problemsby“naive”intervalanalysis,whichmayleadtoaberrantsolutions, duetotheinabilityofintervalarithmetictomodelthecorrelationsbetweenthe uncertainvariables.Consequently,eachstepofthealgorithmintroducesspurious values,causingthesolutionboundstoconvergetooverconservativevalues. Thisphenomenahasbeenextensivelystudiedinqualitativesystemsanalysisand requirestheuseofcomplexandtime-consumingpreconditioningtechniques.

ThisstimulatedtheresearchintoalternativeintervalmethodsbasedonAffine Arithmetic,whichisoneofthemaintopicsofthisbook.

Inthisapproach,eachuncertainvariableisdescribedbyafirst-degreepolynomialcomposedofacentralvalueandanumberofpartialdeviations,eachone modelingtheeffectofanindependentsourceofuncertainty.

TheadoptionofAffineArithmeticmakesitpossibletosolveuncertain mathematicalprogrammingproblemsandobtainareliableestimationofthe solutionhullsbyincludingtheeffectofcorrelationbetweentheuncertain variables,aswellastheheterogeneityofthesourcesofuncertainty.

Thisreliablecomputingparadigmhasbeensuccessfullydeployedtosolvealarge numberofpowersystemoperationproblemsinthepresenceofdatauncertainty. Theexamplespresentedinthisbookcoverpowerflowstudies,optimalpower flowanalysis,dynamicthermalratingassessment,stateestimation,andstability analysis.

xii Preface

Theobtainedresultsdemonstratetheeffectivenessofintervalmethodsto solvethecomplexuncertainproblemsencounteredwhenanalyzingrealistic powersystemoperationscenarios,hence,makingthesemethodsoneofthe mostpromisingalternativesforstochasticinformationmanagementinmodern powersystems.

May2023

AlfredoVaccaro Benevento,Italy

Acknowledgments

IwishtoexpressmysinceregratitudetomymentorProf.ClaudioCanizares,who inspiredandstimulatedmyresearchactivitiesinthefieldofuncertainpower systemanalysis.

IwouldalsoliketothankProf.KankarBhattacharyaforhisvaluableand qualifiedsuggestionsaboutthepotentialroleofrangeanalysisinmarketstudies, andDr.AdamJ.CollinandDr.FabrizioDeCarofortheirvaluablesupportin reviewingthisbook.

AlfredoVaccaro

Acronyms

AAaffinearithmetic

DTRdynamicthermalrating

IAintervalanalysis

IMintervalmathematics

MCMarkovChain

OPFoptimalpowerflow

PFpowerflow

Introduction

Powersystemanalysisisoftenaffectedbylargeandcorrelateduncertainties, whichcouldseriouslyaffectthevalidityoftheobtainedresults.Uncertaintiesin modernpowersystemsstemfrombothinternalandexternalfactors,including modelinaccuracies,measurementerrors,inconsistentdata,andimprecise knowledgeaboutsomeinputinformation.

Conventionalmethodsforuncertaintymodelinginpowersystemanalysis involveusingprobabilistictechniquestocharacterizethevariabilityininput dataandsampling-basedapproachestosimulatethesystembehaviorforalarge numberofpossibleoperatingscenarios.

However,relyingonprobabilisticmethodshasitslimitations,aspowersystem engineersmaystruggletoexpresstheirimpreciseknowledgeaboutcertaininput variableswithprobabilitydistributions(duetothesubjectiveandqualitative natureoftheirexpertise),and,moregenerally,theremaybealackofreliabledata forcharacterizingtheprobabilityparameters.Additionally,theuseofprobabilistic methodsoftenrequirestheassumptionsofnormaldistributionsandstatistical independence,e.g.inthecaseofweathervariables,butoperationalexperience showsthattheseassumptionsarefrequentlyunsupportedbyempiricalevidence.

Recentadvancesinthefieldhaveexpandedtherangeofmethodsforaddressinguncertaintybyintroducinganumberofnonprobabilistictechniques,suchas intervalanalysis,fuzzyarithmetic,andevidencetheory.

Nonprobabilistictechniquesareoftenusedwhenuncertaintyarisesfrom limitationsinourunderstandingofthesystem,ratherthanunpredictablenumericaldata.Inthesecases,onlyroughestimatesofvaluesandrelationshipsbetween variablesareavailable.Consider,forexamplethepowerprofilesgeneratedby smallanddispersedrenewablegenerators,whichstrictlydependontheevolution ofsomeweathervariables,e.g.solarradiationforphotovoltaicgeneratorsand windspeedanddirectionforwindturbines.Althoughthesevariablescanbe measuredataspecificlocation,itischallengingtodeterminetheirdistributions overawidegeographicalarea.Nonetheless,weatherforecastsperiodicallyprovide IntervalMethodsforUncertainPowerSystemAnalysis,FirstEdition.AlfredoVaccaro. ©2023TheInstituteofElectricalandElectronicsEngineers,Inc.Published2023byJohnWiley&Sons,Inc.

qualitativeinformationabouttheexpectedevolutionoftheweathervariableson differenttimehorizons,butthesepredictedprofilescannotbeeasilyexpressedas probabilities.

Itfollowsthattheavailabilityofreliableframeworksformodelingandmanaging nonprobabilisticknowledgecangreatlyenhancetherobustnessandeffectiveness ofpowersystemanalysis.

Forthispurpose,intervalmethodshavebeenrecognizedasanenablingmethodologyforuncertainpowersystemanalysis.

Theprimarybenefitofthesetechniquesisthattheyintrinsicallykeeptrack ofthecomputingaccuracyofeachelementarymathematicaloperation,without needinginformationorassumptionsabouttheinputparameteruncertainties.

Thesimplestandmostcommonlyusedofthesemodelsisintervalmathematics, whichenablesnumericalcomputationsinwhicheachvalueisrepresentedbya rangeoffloating-pointnumberswithoutaprobabilitystructure.Theseintervals areprocessedbyproperaddition,subtraction,and/ormultiplicationoperators, ensuringthateachcomputedintervalenclosestheunknownvalueitrepresents.

Manyanalystsviewintervalmathematicsasasubsetoffuzzytheory,asinterval variablescanbeviewedasaspecificinstanceoffuzzynumbers.However, connectingintervalmathematicstofuzzysettheoryisnotstraightforward. Recently,fuzzysettheoryandintervalanalysishavebothbeenlinkedtoabroader topologicaltheory.Similarly,itisarguedthatfuzzyinformationgranulation, roughsettheory,andintervalanalysisareallsubsetsofalargercomputationalparadigmcalledgranularcomputing,wherethesemethodologiesare complementaryandsymbiotic,ratherthanconflictingandexclusive.

Thisbookfocusesontheapplicationofintervalmethodsinuncertainpower systemanalysis.Inparticular,afterintroducingthebasicelementsofinterval computing,asetofconventionalpowersystemoperationproblemsinthe presenceofdatauncertaintiesareformalizedandsolved.Manynumerical examplesarepresentedanddiscussedinordertodemonstratetheeffectiveness ofintervalmethodstoreliablysolvethecomplexproblemsencounteredwhen analyzingtherealisticoperatingscenariosofmodernpowersystems.

IntroductiontoReliableComputing

Manypower-engineeringcomputations,especiallythoserelatedtosystem analysis,areaffectedbylargeandcomplexuncertainties.Theseuncertainties makeitdifficulttocomputethe“exact”problemsolution,andtheanalystis requiredtoidentifyaproperapproximatedsolution,whichisascloseaspossible tothe“exact”one.Thedifferencebetweenthe“exact”andtheapproximated solutioniscommonlyreferredtoasthesolution“error.”

Thesourcesofuncertaintiesaffectingpowersystemanalysisaremultipleand heterogeneous,andcanbebothexternalandinternaltothecomputingprocess. Externaluncertaintiesincludemeasurementerrors,missingdata,andsimplified models;whileinternaluncertaintiesaremainlyrelatedtothecomputingerrors inducedbydigitalprocessing,whichfrequentlyrequiresreplacingrigorous mathematicalmodelswithdiscreteapproximations(e.g.timediscretization, truncation,andround-offerrors).

Hence,whenintegratingtheresultsofnumericalanalysisinpowersystem operationtools,theimpactoftheseuncertaintiesmustbeassessedandaformal erroranalysisshouldbeconsideredanimportantpartofthedevelopmentprocess.Theobjectiveofsuchformalerroranalysisistocomprehensivelyassessthe accuracyofallthecomputationsinvolved,definethemagnitudeofthesolution errorsasafunctionofthevaluesandtheerrorsoftheinputdata(i.e.variables andparameters).

Unfortunately,definingaformalmathematicalprocessforspecifyingthe accuracyofnumericalcomputingalgorithmsisextremelycomplex,since estimatingthepropagationofboththeexternalandinternalerrorsforallthe basicoperationscomposingthecomputingprocessisoftenunfeasible,evenfor simplealgorithms.

Moreover,accuracyspecificationrequiresthecomplianceoftheinputdata withasetofstrictprerequisites(e.g.well-conditionedmatrices,nooverflow,

1IntroductiontoReliableComputing

andfunctionswithboundedderivatives).Guaranteeingorevencheckingthese prerequisitesforallthepossiblecombinationsoftheinputdatarepresents anotherchallengingissuetoaddress.

Hence,powersystemanalystsfrequentlydeploynumericalalgorithmswithout formalaccuracyspecificationsandrigorouserroranalysis,checkingtheconsistencyoftheobtainedresultsonthebasisoftheirownexperienceorbycrudetests. Thispracticecouldhindertheintegrationofapproximatenumericalcomputing inmodernpowersystemstools,whicharecharacterizedbythepresenceoflarge datauncertainties,stemmingfrommultipleandheterogeneoussources.

Totryandovercomethislimitation,thepowersystemresearchcommunity startedadoptingreliablecomputing-basedmodels,whichallowtheaccuracy ofthecomputedquantitiestobeautomaticallyestimatedaspartoftheprocessof computingthem.Theapplicationofthesemodelsinnumericalcomputationsis alsoreferredtoasself-validatedcomputing,sinceitcanestimate“aposteriori” theerrormagnitudeoftheentirecomputingprocess(StolfiandDeFigueiredo, 1997).Thisfeatureisextremelyimportant,especiallywhenthedatauncertainties areinducedbyexternalcauses.Inthiscase,iftheoutputerrorscomputedby theself-validatedmodelbecometoolarge,i.e.overcomingafixedacceptable threshold,thenspecificremedialactionscanbeautomaticallytriggeredinorder toenhancethemodelaccuracy(e.g.acquiremoredata,re-adjourntheinput parameters,andusemoreaccuratemodels).

1.1ElementsofReliableComputing

Let f ∶ Rm → Rn beacontinuousmathematicalfunction,andsupposeweneedto compute z = f (x ) for x ∈ Rm .Forthis,weshouldimplementadiscretenumerical computation Z = F (X ),where X and Z arediscretemathematicalobjectsapproximatingthecorrespondingcontinuousvariables x and z. Tosolvethisissuedifferentreliablecomputingmodelscanbeadopted,including probabilitydistributionsandrange-basedmethods.

Inparticular,theadoptionofprobabilitydistributionscanapproximate,ina statisticalsense,thecomputedresult Z byconsideringeachcomponentofthe vector z asareal-valuerandomvariable,whoseprobabilitydistributionfunction isfrequentlyassumedtofollowaGaussiandistribution.Inthiscase,areliable computingmodelshouldspecifythestatisticalmomentsofeachcomponent zi , andthecorrespondingcovariancematrixdescribingthejointGaussianprobabilitydistributionoftherandomvector (z1 , , zn ),giventhosecharacterizingthe randominputvariables (x1 , , xm )

Theapplicationofthisprobabilistic-basedreliablecomputingmodelisoften limitedtospecificapplicationdomains,whicharecharacterizedbyGaussian uncertainties,linearmappings,andnegligibletruncationerrors.Thelackofthese conditionsmakesthestatisticalcharacterizationofthecomputedresultextremely complexorevenmathematicallyintractable(StolfiandDeFigueiredo,1997).

Totryandovercomethislimitation,mostreliablecomputingmodelsapproximatethecomputedresultsbyranges,ratherthanbyprobabilitydistributions.

Accordingtothesemodels,theapproximatedsolution Z isdescribedbymeans ofitsrange [Z ],whichisacompactsetcontainingthe“exact”solutions z = f (x ) foralltheinputvariables x lyingintherange [X ].

Thisimportantfeature,whichisusuallyreferredtoasthe fundamentalinvariant ofrangeanalysis,guaranteesthattherange [Z ] containsthetruesolutionset, providedthattheinputvariablesvaryinafixedrange.

ThesimplestmodelofrangeanalysisisIntervalArithmetic(Moore,1966), whichdefinestherangeofeachcomponentofthecomputedresult [Zi ] bya realinterval,whichisasetofrealnumberslyingbetweenitsupperandlower bounds.Sincenoconstraintsrelatingtheseintervalsareassumed,meaningthat alltheuncertaintiesareassumedtobestatisticallyindependent,therangeofthe computedresult [Z ] istheCartesianproductoftherangesofitscomponents [Zi ], sinceallcombinationsof z1 , … , zn inthebox [Z1 ]×···×[Zn ] areallowed.

Inmoreadvancedreliablecomputing-basedmodels,suchasthosebasedon affinearithmetic(AA),thecomputedresultalsointegratesusefulinformation aboutthepartialcorrelationsbetweentheoutputvectorcomponents zi ;hence, identifyingthestatisticaldependenciesbetweentheinputvariables xi andthe computedresult.Inthiscase,therangeofthecomputedresult [Z ] isaproper subsetoftheCartesianproductoftheindividualranges.

Oneofthemostimportantfeatureswhichcharacterizesallrange-basedmodels istheircapabilityofcomputing,foreveryfunction f ∶ Rm → Rn ,a rangeextension F ∶ ℜm → ℜn ,whichischaracterizedbythe fundamentalinvariantofrange analysis:

Iftheinputvector x =(x1 , … , xm ) liesintherangejointlydeterminedbythe givenapproximatevalues X =(X1 , … , Xm ),thenthequantities z =(z1 , … , zn )= f (x1 , … , xm ) areguaranteedtolieintherangejointlydefinedbytheapproximate values Z =(Z1 , , Zn )= F (X1 , , Xm ).

Thispropertyisextremelyusefulinreliablecomputing,sincethejointrange determinedbytheapproximatedvalues Zi isanouterestimationoftherealsolutionset,namely: S ={z ∶ z = f (x1 , … , xm ), x1 ∈ X1 , … ., xm ∈ Xm } ⊆ Z (1.1)

hence,introducingaconservativefactorinapproximatingthesolutionvectors. Thisconservativismisavaluablefeatureofrangeanalysis-basedmethods,which isextremelyimportantinreliablepowersystemanalysis,sinceitallowsthe Analysttoboundallinternalandexternaluncertaintiesinnumericalcomputing. However,obtainingasuitable(nottoolarge)conservativismlevelisarelevant probleminrange-basedcomputation,sincethenaiveapplicationofrange-based modelsoftenresultsinextremelyconservativesolutionranges,whicharetoo wide,andhence,notusefulinrealisticapplicationdomains.

Therefore,inordertoassessandcomparetheconservativismofrange-based reliablecomputingmodels,propermetricsshouldbedefined.Forthispurpose, weintroducethe relativeaccuracy oftherange-basedapproximation Z ,whichis definedas:

where ||Y

and

[Z ]|| arethenormsoftherealsolutionrange Y

(

)∶ x ∈[X ]} andthecomputedrange [Z ],respectively.

Thisindexisareliablemeasureoftheconservativismintroducedbyrange-based computing,indicatingtheouterestimationaccuracybyanumber,whichcould varybetweenzero(i.e.thecomputedrangeismuchwiderthantherealone)and one(i.e.noconservativismisintroducedinrangecomputing).

Obviously,thisindexrequiresthattheinputvector x =(x1 , … , xm ) shouldvary intherangejointlydeterminedbythegivenapproximatevalues X =(X1 , , Xm ), asstatedbythefundamentalinvariantofrangeanalysis.Thishypothesiscannot beverifiedinrealapplicationdomains,wheresomeoftheinputdataareacquired bymeasurements,whichcanbeaffectedbyunboundederrors.Inthiscontext, theassumptionrelatedtotheinclusionoftheoutputvariables z intherange jointlydeterminedbytheapproximatevalues Z shouldberevisedbyintroducing probabilisticinformationabouttherangeofthepossiblevalues [Z ].Thisrequires determining,forthecomputedrange[Z],thecorresponding confidencerangepZ , whichistheprobabilityof z tobeincludedin[Z].Thisapproachdiffersfrom theGaussian-basedprobabilisticmodelsasitdoesnotassumeanyhypothesis abouttheprobabilitydistributionoftheerrorinsidetherange [Z ],butonlythat itsintegraloverthecomputedrangeisatleast pZ .

Hence,theapplicationofrange-basedmethodsinthiscontextrequirescomputing,foreachmathematicaloperation,notonlythejointrange,butalsoaconservativeestimationofthecorrespondingconfidencelevel,asafunctionofthe confidenceleveloftheinputdata.

1.2IntervalAnalysis

Intervalanalysis(IA),alsoreferredtoasintervalarithmetic,isarange-based modelfornumericalcomputingthatdescribeseachuncertainvariable x byan intervalofrealnumbers x ,whichisguaranteedtocontainthe(unknown)“true” valueof x (Moore,1966).

Morespecifically,arealintervalisacompactset,whichisdefinedas:

where xlo and xhi arethelowerandupperboundsoftheinterval,respectively.

Thoseintervalsarecombinedandprocessedbyspecificmathematicaloperators,whichgeneralizeallthereal-valuefunctionstoprocessinterval-based uncertainvariables,insuchawaythatthecomputedintervalsareguaranteed tocontainallthepossiblevaluesofthecomputedquantities.Toachievethis, IAdefinesforeachmathematicalfunction z = f (x1 , , xn ) with xi ∈ R aproper intervalextension z = f (x 1 , , x n ),whichallowscomputationofaninterval z that containsallthevalues z = f (x ) for (x1 , … , xn ) varyingindependentlyoverthe givenintervals (x 1 , … , x n ).

Computingintervalextensionforlinearfunctionsisextremelysimple,sinceit onlyrequiresdefiningaclosedformexpressionfortheextremevaluesofthefunctionwhenitsargumentsvaryindependentlyoverspecifiedintervals.

Onthecontrary,computingintervalextensionsfornonlinearfunctionsisa verycomplexissue.Indeed,defininganalyticformulaforcomputingthe“exact” extremevaluesofthesefunctionscanbeextremelydifficult.Hence,inorderto satisfythefundamentalinvariantofrangeanalysis,aconservative(buteasily computable)approximationofthe“exact”functionrangeshouldbeidentified. Inthesecases,thecorrespondingcomputedintervalsareouterestimationsofthe “exact”solutionsets.

Theintervalextensionsofthemainmathematicaloperatorsandelementary functionscanbecomposedinordertocomputetheintervalextensionsforany complexfunctionbyusingthesamemathematicalschemesadoptedinreal numberscomputing.Hence,anynumericalalgorithmprocessingrealnumbers canbeautomaticallydeployedforprocessingintervalvariablesbyreplacingthe realnumberoperatorsandfunctionswiththeircorrespondingintervalextensions. Thisschemeallowsthenumericalalgorithmstoevolvefromcomputingwith realnumberstocomputingwithintervalsandtoidentifysolutionswhichare nolongerdeterministic(validonlyforfixedrealinputdata),butdescribedby intervalsthat,accordingtothefundamentalinvariantofrangeanalysis,are

1IntroductiontoReliableComputing

guaranteedtoincludetherealvaluesofthesolutionsforallinstancesofthe uncertaininputdata(thatshouldvaryinthespecifiedintervals).

1.3Interval-BasedOperators

Theintervalextensionsofthebasicmathematicaloperatorscanbeeasilydefined asfollows:

x =[−xhi , xlo ]

x + y =[xlo + ylo , xhi + yhi ]

x + c =[xlo + c, xhi + c]

x y =[xlo yhi , xhi ylo ]

c x =[c xlo , c xhi ]c > 0

c ⋅ x =[c ⋅ xhi , c ⋅ xlo ]c < 0

(1.4)

Todefinetheintervalextensionofthemultiplication, x ∗ y,itisnecessaryto deriveananalyticexpressionoftheminimumandmaximumvaluesofthefunction xy for (x , y) varyingovertherange [xlo , xhi ]×[ylo , yhi ].Tosolvethisproblem,it shouldbenotedthatthefunction xy islinearin y (x )foreachfixed x (y);hence,its maximumandminimumvalues,referredtoas a and b,respectively,arelocatedat thecorneroftherectangle [xlo , xhi ]×[ylo , yhi ],namely:

a = min {xlo ⋅ ylo , xlo ⋅ yhi , xhi ⋅ ylo , xhi ⋅ yhi }

b = max {xlo ylo , xlo yhi , xhi ylo , xhi yhi }

(1.5)

Thesameschemecanalsobeadoptedforcomputingtheintervalextensionof thedivision, x ∕y,whichcanberepresentedastheproductof x by1∕y.Inthiscase,it shouldbenotedthatthereciprocalfunction1∕y isnotdefinedfor y = 0;hence, thisconditionshouldbeproperlycheckedasfollows:

if ylo < 0and yhi > 0then a =−∞, b =+∞

if yhi = 0then a =−∞

if yhi ≠ 0then a = 1 yhi

if ylo = 0then b =+∞

if ylo ≠ 0then b = 1 ylo

(1.6)

Theseinterval-basedarithmeticoperatorsgeneralizethearithmeticofrealnumberstothesetofrealintervals.

Otherusefulintervaloperatorsincludethemidpoint m(x ) andtheradius r (x ) of theinterval x ,whicharedefinedas:

m(x )= xlo + xhi 2

r (x )= xhi xlo 2

Moreover,itisalsousefultodefinetheintersectionoftwointervals x and y, whichisdefinedas:

x ∩ y =[max {xlo , ylo }, min {xhi , yhi }]

andtheconvexhulloftwointervals x and y,whichisthesmallestinterval x ∪ y containing [min {xlo , ylo }, max {xhi , yhi }]

Finally,inordertosolvemultidimensionalproblems,wedefineinterval matrices A =(aij ) with i ∈[1, m] and j ∈[1, n],andintervalvectors x =(x i ),with i ∈[1, n],whicharedefinedasfollows(GötzandGünter,2000):

[Alo , Ahi ]={B ∈ Rmxn ∶ Alo ≤ B ≤ Ahi }

Therealmatrix A ∈(Rnxn ) issaidtobean M matrix,if aij ≤ 0for i ≠ j andif A 1 existsandisnonnegative.Thisdefinitioncanbegeneralizedtointervalmatrices; inparticular,ifeachmatrix A fromagivenintervalmatrix A isan M matrix,then theintervalmatrix A isan M matrix.

Startingfromthesedefinitions,itispossibletoexpresstheproduct Ax asfollows:

Hence, Ax istheintervalvectorcontainingtheleftsetin(1.9).

Anintervalvectorenclosingsomeset S astightaspossibleiscalledthe(interval) hullof S.

1.4IntervalExtensionsofElementaryFunctions

Computingtheintervalextensionofthesquarerootisstraightforwardsincethis functionismonotonic,andapreliminarycheckoftheinputrangeisonlyrequired, asfollows: if xlo < 0and xhi < 0then √x =[] if xlo < 0and xhi > 0then √x =[0, √xhi ] if xlo > 0and xhi > 0then √x =[√xlo , √xhi ] (1.10)

1IntroductiontoReliableComputing

Asimilarapproachcanbeadoptedfordefiningtheintervalextensionofthe logarithmlog(x ) (whichisnotdefinedatzero)andtheexponentialexp(x )= ex , whicharedescribedin(1.11)and(1.12),respectively.

if xhi < 0thenlog x =[]

if xlo < 0and xhi > 0thenlog x =[−∞, log xhi ]

if xlo > 0and xhi > 0thenlog x =[log xlo , log xhi ]

ex =[exlo , exhi ]

Thedefinitionofintervalextensionoftrigonometricfunctionsisnottrivial, becausetheycouldbenonmonotonicintheconsideredinputinterval,butthis canbeobtainedbycomputingthemaximumandminimumfunctionvaluesfor inputsvaryinginthespecifiedinterval,whichforcosandsinfunctionsoccurat integermultiplesof �� and �� ∕2,respectively.Hence,thefollowingprocedurescan beadoptedforcomputingthecorrespondingintervalextensionofcosandsin functions,respectively:

if k�� ∈ x (k = 0, 2, 4, …) then b = 1

else b = max (cos(xlo ), cos(xhi ))

if k�� ∈ x (k = 1, 3, 5, …) then a =−1

else a = min (cos(xlo ), cos(xhi ))

cos x =[a, b] (1.13)

if k �� 2 ∈ x (k = 0, 2, 4, …) then b = 1

else b = max (sin(xlo ), sin(xhi ))

if k �� 2 ∈ x (k = 1, 3, 5, …) then a =−1

else a = min (sin(xlo ), sin(xhi ))

sin x =[a, b] (1.14)

Thesecomputingprocedurescanbeproperlygeneralizedinordertocompute theintervalextensionofanyelementaryfunction f ∶ D ⊆ Rn → Rm with x ⊆ D, which,thankstothefundamentalinvariantofrangeanalysis,isanenclosureof thecorrespondingfunctionrange.

TheeffectivenessofIAinconservativelyestimatingtherangeofanyelementary functionwhentheinputsrangesoverassignedintervalsisaneffectivetool,which canbeusedforeffectivelysolvingcomplexmathematicalproblems,suchas:

1.Computingtheglobalminimaofscalarfunctions

2.EstimatingtherangeoftheJacobianmatrix

3.Verifyingandenclosingsolutionsofinitialvalueproblems, 4.Computingthezerosofscalarfunctions.

1.5SolvingSystemsofLinearIntervalEquations

IA-basedcomputingcanbeappliedtosolvethefollowinguncertainlinear problem:

Ax = b (1.15)

where A and b areknown n × n intervalmatrix,and n-dimensionintervalvector, respectively.Theseknownquantitiescanbeexpressedas:

A =[m(A)− r (A), m(A)+ r (A)]

b =[m(b)− r (b), m(b)+ r (b)] (1.16)

where m(A) (m(b))and r (A) (r (b))arethecenterandtheradiusoftheinterval matrix A (intervalvector b),respectively.

Thesolutionsetoftheselinearequationsisdefinedas:

X ={x ∈ Rn ∶ Ax = b, A ∈ A, b ∈ A} (1.17)

Ourtaskistoidentifyanouterintervalenclosureofthisset. Tothisaim,let’sdefinethefollowing:

1. e =(1, 1, … , l)T ∈ Rn

2. f =−e,

3. Y ={y ∶ |y| = e, y ∈ Rn },sothat Y has2n elements.Forexample,for n = 2 Y ={(1, 1);(−1, 1);(1, 1);(−1, 1)}

4. ∀z ∈ Rn , Tz isthediagonalmatrixwiththevectorcomponents zi onitsdiagonal (namely diag(Tz )={z1 , , zn })

5. Ayz = m(A)− Ty r (A)Tz and by = m(b)+ Ty r (b)∀y, z ∈ Rn

6. dy = m(A) 1 by

7. by = m(b)+ Ty r (b)

Thankstothesedefinitions,itispossibletorigorouslysolvetheproblem(1.15) bysolvingthefollowing2n linearcomplementaryproblems:

x + = A 1 ye Ayf x + A 1 ye by ∀y ∈ Y (1.18) (2.4).

Thesolutionofthisproblemforeach y ∈ Y ,herereferredtoas xy ,maybe obtainedusingconventionaltechniquesforsolvinglinearcomplementarity

1IntroductiontoReliableComputing

problems.Oncethese2n solutionshavebeencomputed,theouterinterval estimationofthesolutionsetcanbeeasilyobtainedasfollows:

xlo = min (xy ∶ y ∈ Y )

xhi = max (xy ∶ y ∈ Y ) (1.19)

However,inordertosimplifythesolutionprocess,i.e.byavoidingtheinversion ofthematrix Aye ,itispossibletorecasttheproblem(1.18)asfollows:

Ayz x = by Tz x ≥ 0

z ∈ Y (1.20)

Thisproblemcanbesolvedbysolvingthesystems Ayz x = by ,fordifferent z’s untilsatisfyingthecondition Tz x ≥ 0,whichisequivalentto zj xj ≥ 0foreach j Hence,thefollowingalgorithmcanbeadoptedtosolvetheproblem(Rohn,1989):

Algorithm

● Step0:Select z ∈ Y (recommended z = sign(dy ))

● Step1:Solve Ayz x = by

● Step2:If Tz x ≥ 0set xY = x andterminate

● Step3:Otherwise,find k = min (j; zj xj < 0) (1.21)

● Step4:Set zk =−zk andgotoStep1.

if A isregular,namelyifeach A ∈ A isnonsingular,thenthisiterativescheme convergesinafinitenumberofstepsforeach y ∈ Y andforanarbitrarystarting z ∈ Y instep0(Rohn,1989).

Inmanyrealisticcases,computing xy onlyrequiresthesolutionofasingle system Ayz x = by ,andthereisnoneedtocomputeall2n vectors yz;hence,a subsetof Y canbeconsideredingeneratingthevectors y

Example1.1 Let’sconsiderthefollowingsetoflinearintervalequations:

Inthiscase,itfollowsthat:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Interval methods for uncertain power system analysis alfredo vaccaro all chapter instant download by Education Libraries - Issuu