Environmental Science & Engineering Magazine | August 2019

Page 28

WATER

Providing healthy drinking water could be the innovation opportunity of this century By Yamuna Vadasarukkai

T

he rate of change is staggering. It is unyielding, ubiquitous and demanding. It forces global industries to push the limits and revolutionize the way we live. Aerospace. Medicine. Transportation. Communications. Only those that keep up are competitive. Why then is the water industry behind? It is no exaggeration to say that our future depends on water; yet, the dominant attitude in the water industry is what was good enough 100 years ago is good enough today. It is more than a matter of innovation for innovation’s sake. The water industry, especially potable water, desperately needs a revolution. INFRASTRUCTURE Based on survey results of 106 municipalities, the 2016 Canadian Infrastructure Report Card says that 29% of potable water assets are considered to be in fair, poor or very poor physical condition. The estimated replacement value of this 29% is $60 billion. Total replacement of 28  |  August 2019

all potable water assets is projected to be $207 billion. At the current rate of reinvestment, the net condition of all potable water assets will continue to decline. DISINFECTION A 2012 article by the Centers for Disease Control and Prevention called chlorine water treatment “one of the ten greatest public health achievements of the 20th century.” Disinfection in drinking water hasn’t had an overhaul since 1908, when chlorine was first introduced. While new methods, such as reverse osmosis, UV, ozone and hydrogen peroxide, have been incorporated in disinfection systems within the past 100 years, none have had the singular impact and level of adoption as chlorine. Yet, for almost 50 years it has been known that chlorine creates disinfection byproducts (DBPs) which have been linked to the risk of cancer and miscarriages. Also, it is ineffective against Legionella, is pH dependent, loses effectiveness in high temperatures and it is corrosive. It may take decades for the conse-

quences of chlorine disinfection to be manifested, but the same urgent responsibility to public health that sparked action a century ago remains today. We must no longer focus on “water that won’t make you sick”. We need to ensure that “water will make you healthy”. The responsibility to public health motivates the industry to innovate, yet cautions it from doing so too fast. There must be room for innovation approached in a sober, scientific, single-minded fashion. THE SOLUTION The widespread implications of “bad” water are well documented on mainstream media and within scientific communities. Canada presents a prime testing ground for innovation. It has the water resources, the geographic and temperature diversity, an overreliance on chlorine disinfection, and the means to do something about it. It also has diverse socio-economic representation as seen in the First Nations communities, where some homes do not have electricity or indoor plumbing. What better country is there to be a leader in drinking water innovation? It stands to reason that if it can be done in Canada, it can be replicated elsewhere. However, this important and monumental task requires a measured, longterm, forward-thinking approach. The innovation necessary to meet the challenge of Canada’s drinking water must address the following five considerations: Environmental Science & Engineering Magazine


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Environmental Science & Engineering Magazine | August 2019 by Environmental Science and Engineering Magazine - Issuu